1,232
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Surface grown copper nanowires for improved cooling efficiency

ORCID Icon, , , & | (Reviewing editor)
Article: 1512039 | Received 23 Jan 2018, Accepted 10 Aug 2018, Published online: 16 Sep 2018

References

  • Ahmed, S. , Ismail, A. F. , Sulaeman, E. , & Hasan, M. H. (2016). Study on turbulent characteristics of flow boiling in a micro gap under the influence of surface roughness and micro fins. ARPN Journal of Engineering and Applied Sciences , 11(1), 410–414.
  • Alcoutlabi, M. , & McKenna, G. B. (2005). Journal Phys.: Condens Matter , 17, 461.
  • Baxi, C. B. , & Wong, C. P. C. (2000). Review of helium cooling for fusion reactor applications. Fusion Engineering and Design , 51–52, 319–324. doi:10.1016/S0920-3796(00)00336-7
  • Betz, A. R. , Jenkins, J. , & Attinger, D. (2013). Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. International Journal of Heat and Mass Transfer , 57(2), 733–741. doi:10.1016/j.ijheatmasstransfer.2012.10.080
  • Bournonville, Y. , Grandotto, M. , Pascal-Ribot, S. , Spitz, P. , & Escourbiac, F. (2009). Numerical simulation of swirl-tube cooling concept, application to the ITER project. Fusion Engineering and Design , 84(Compendex), 501–504. doi:10.1016/j.fusengdes.2008.11.028
  • Burmeister, L. C. (1993). Convective heat transfer . Hoboken, NJ: John Wiley & Sons.
  • Cao, H. Q. , Xu, Z. , Sang, H. , Sheng, D. , & Tie, C. Y. (2001). Advancement Materials , 13, 121. doi:10.1002/1521-4095(200101)13:2<121::AID-ADMA121>3.0.CO;2-L
  • Chushak, Y. G. , & Bartell, L. S. (2001). Melting and freezing of gold nanoclusters. Journal Physical Chemical B , 105, 11605. doi:10.1021/jp0109426
  • Dharmendra, M. , Suresh, S. , Kumar, C. S. , & Yang, Q. (2016). Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate. Applied Thermal Engineering , 99, 61–71. doi:10.1016/j.applthermaleng.2015.12.081
  • Dietz, C. R. , & Joshi, Y. K. (2008). Single-phase forced convection in microchannels with carbon nanotubes for electronics cooling applications. Nanoscale and Microscale Thermophysical Engineering , 12(3), 251–271. doi:10.1080/15567260802171937
  • Dingman, S. D. , Rath, N. P. , Markowitz, P. D. , Gibbons, P. C. , & Buhro, W. E. (2000). Low-temperature, catalyzed growth of indium nitride fibers from azido-indium precursors. Angew Chem., International Editors , 39, 1470–1472. doi:10.1002/(SICI)1521-3773(20000417)39:8<1470::AID-ANIE1470>3.0.CO;2-L
  • Dippel, M. , Maier, A. , Gimple, V. , Wider, H. , Evenson, W. E. , Rasera, R. L. , & Schatz, G. (2001). Size-dependent melting of self-assembled indium nanostructures. Physical Review Letters , 87(p), 095505. doi:10.1103/PhysRevLett.87.272301
  • Ekstrand, L. , Mo, Z. , Zhang, Y. , & Liu, J. (2005). Modelling of carbon nanotubes as heat sink fins in microchannels for microelectronics cooling . Warsaw, Poland: IEEE.
  • Fan, Y. , Zhong, X. , Liu, J. , Wang, T. , Zhang, Y. , & Cheng, Z. (2007). A study of effects of coolants on heat transfer capability of on-chip cooling with CNT micro-fin architectures by using CFD simulation . Shanghai, China: IEEE.
  • Haq, R. U. , Nadeem, S. , Khan, Z. H. , & Noor, N. (2015). Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B: Condensed Matter , 457, 40–47. doi:10.1016/j.physb.2014.09.031
  • Hu, M. , Shenogin, S. , Keblinski, P. , & Raravikar, N. (2007). Thermal energy exchange between carbon nanotube and air. Applied Physics Letters , 90(23), 231905. doi:10.1063/1.2746954
  • Huang, L. , Wang, H. , Wang, Z. , Mitra, A. , Bozhilov, K. N. , & Yan, Y. (2002). Nanowire arrays electrodeposited from liquid crystalline phases. Advanced Materials , 14(1), 61. doi:10.1002/1521-4095(20020104)14:1<61::AID-ADMA61>3.0.CO;2-Y
  • Huang, M. H. , Choudrey, A. , & Yang, P. D. (2000). Ag nanowire formation within mesoporous silica. Chemical Communications 12,1063-1064.
  • Jackson, C. L. , & McKenna, G. B. (1990). The melting behavior of organic materials confined in porous solids. Journal Chemical Physical , 93(p), 9002. doi:10.1063/1.459240
  • Jirage, K. B. , Hulteen, J. C. , & Martin, C. R. (1997). Nanotubule-based molecular-filtration membranes. Science , 278, 655. doi:10.1126/science.278.5338.655
  • Kim, B. S. , Choi, G. , Shim, D. I. , Kim, K. M. , & Cho, H. H. (2016). Surface roughening for hemi-wicking and its impact on convective boiling heat transfer. International Journal of Heat and Mass Transfer , 102, 1100–1107. doi:10.1016/j.ijheatmasstransfer.2016.07.008
  • Leung, C. W. , Wong, T. T. , & Probert, S. D. (2001). Enhanced forced-convection from ribbed or machine-roughened inner surfaces within triangular ducts, Applied Energy , 69(2), 87–99. Retrieved from 10 1 21 test analysis. doi:10.1016/S0306-2619(01)00002-2
  • Lewis, L. J. , Jensen, P. , & Barrat, J.-L. (1997). Melting, freezing, and coalescence of gold nanoclusters. Physical Review B , 56(4), 2248. Retrieved from http://link.aps.org/abstract/PRB/v56/p2248
  • Li, C. , Wang, Z. , Wang, P.-I. , Peles, Y. , Koratkar, N. , & Peterson, G. P. (2008). Nanostructured copper interfaces for enhanced boiling, Small , 4(Compendex), 1084–1088. Retrieved from. doi:10.1002/smll.200700991
  • Link, S. , Wang, Z. L. , & El-Sayed, M. A. (2000). How does a gold nanorod melt? Journal Physical Chemical B , 104(p), 7867. doi:10.1021/jp0011701
  • Lisiecki, I. , Sack-Kongehl, H. , Weiss, W. , Urban, J. , & Pileni, M.-P. (2000). Annealing process of anisotropic copper nanocrystals. 2. rods. Langmuir , 16(p), 8807. doi:10.1021/la000345v
  • Morales, A. M. , & Lieber, C. M. (1998). A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science , 279(5348), 208–211.
  • Mori, S. , Aznam, S. M. , & Okuyama, K. (2015). Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate. International Journal of Heat and Mass Transfer , 80, 1–6. doi:10.1016/j.ijheatmasstransfer.2014.08.046
  • Morshed, A. , Yang, F. , Ali, M. Y. , Khan, J. A. , & Li, C. (2012). Enhanced flow boiling in a microchannel with integration of nanowires. Applied Thermal Engineering , 32, 68–75. doi:10.1016/j.applthermaleng.2011.08.031
  • Murphy, C. J. , & Jana, N. R. (2002). Advancement Materials , 14, 80.
  • Nigro, R. L. , Malandrino, G. , & Fragalà, I. L. (2001). Metal−organic chemical vapor deposition of CeO2〈100〉 oriented films on no-rolled hastelloy C276. Chemical Materials , 13, 4402–4404. doi:10.1021/cm011232f
  • Oswald, H. R. , Reller, A. , Schmalle, H. W. , & Dubler, E. (1990). Structure of copper(II) hydroxide, Cu(OH)2. Acta Crystallogr., Sect. C , 46, 2279. doi:10.1107/S0108270190006230
  • Pan, Z. W. , Dai, Z. R. , Ma, C. , & Wang, Z. L. (2002). Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. Journal of the American Chemical Society , 124, 1817. doi:10.1021/ja017284n
  • Qi, L. M. , Ma, J. M. , Cheng, H. M. , & Zhao, Z. G. J. (1997). Reverse micelle based formation of BaCO3 nanowires. The Journal of Physical Chemistry B , 101, 3460–3463.
  • Rohsenow, W. M. , Harnett, J. P. , & Ganic, E. N. (1985). Handbook of heat transfer applications (2nd ed.). New York,NY: McGraw-Hill.
  • Sapp, S. A. , Lakshmi, B. B. , & Martin, C. R. (1999). Template synthesis of bismuth telluride nanowires. Advancement Materials , 11, 402. doi:10.1002/(ISSN)1521-4095
  • Sheikholeslami, M. , Gorji-Bandpy, M. , & Ganji, D. D. (2015). Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews , 49, 444–469. doi:10.1016/j.rser.2015.04.113
  • Shijin, Z. , Shaoqing, W. , & Hengqiang, Y. (2001). Size-dependent melting properties of free silver nanoclusters. J. Phys. Soc. Jpn. , 70, 2953. doi:10.1143/JPSJ.70.2953
  • Smigelskas, A. D. , & Kirkendall, E. O. (1947). Transactions AIME , 130, 171.
  • Sun, L. , Searson, P. , & Chien, C. (2000). Finite-size effects in nickel nanowire arrays. Physical Review B , 61(10), R6463. doi:10.1103/PhysRevB.61.R6463
  • Tullius, J. , Tullius, T. , & Bayazitoglu, Y. (2012). Optimization of short micro pin fins in minichannels. International Journal of Heat and Mass Transfer , 55(15), 3921–3932. doi:10.1016/j.ijheatmasstransfer.2012.03.022
  • Ujereh, S. , Fisher, T. , & Mudawar, I. (2007). Effects of carbon nanotube arrays on nucleate pool boiling. International Journal of Heat and Mass Transfer , 50(19–20), 4023–4038. doi:10.1016/j.ijheatmasstransfer.2007.01.030
  • Vijiapurapu, S. , & Cui, J. (2007). Simulation of turbulent flow in a ribbed pipe using large eddy simulation. Numerical Heat Transfer; Part A: Applications , 51(Compendex), 1137–1165. doi:10.1080/10407780601112829
  • Von Jaggi, H. , & Oswald, H. (1961). Die kristallstruktur des kupferhydroxids Cu (OH) 2. Acta Crystallographica , 14(10), 1041–1045. doi:10.1107/S0365110X61003016
  • Wang, B. , Wang, G. , Chen, X. , & Zhao, J. (2003). Melting behavior of ultrathin titanium nanowire. Physical Reviews B , 67(p), 193403. doi:10.1103/PhysRevB.67.193403
  • Wang, J. , Chen, X. , Wang, G. , Wang, B. , Lu, W. , & Zhao, J. (2002). Melting behavior in ultrathin metallic nanowires. Physical Reviews B , 66(p), 085408. doi:10.1103/PhysRevB.66.085408
  • Wang, Z. L. , Petroski, J. M. , Green, T. C. , & El-Sayed, M. A. (1998). Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. Journal PhysChem B , 102, 6145. doi:10.1021/jp981594j
  • Wen, X. , Zhang, W. , & Yang, S. (2002). Solution phase synthesis of Cu(OH)2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors. Nano Letters , 2(12), 1397–1401. doi:10.1021/nl025848v
  • Whittingham, B. , Marshall, I. H. , Mitrevski, T. , & Jones, R. (2004). The response of composite structures with pre-stress subject to low velocity impact damage, Composite Structures , 66(1–4), 685–698. Retrieved from. doi:10.1016/j.compstruct.2004.06.015
  • Xia, Y. N. , Yang, P. D. , Sun, Y. G. , Wu, Y. Y. , Mayers, B. , Gates, B. , & Yan, H. Q. (2003). One-diemensional nanostructures: Synthesis, characterization and applications. Advancement Materials , 15(p), 353. doi:10.1002/adma.200390087
  • Xu, C. H. , Woo, C. H. , & Shi, S. Q. (2004). Formation of CuO nanowires on Cu foil. Chemical Physics Letters , 399, 62–66. doi:10.1016/j.cplett.2004.10.005
  • Yin, Y. , Rioux, R. M. , Erdonmez, C. K. , Hughes, S. , Somorjai, G. A. , & Al Ivisatos, A. P. (2004). Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science , 304, 711. doi:10.1126/science.1096566
  • Zahiruddin, M. , & Kunieda, M. (2016). Analysis of micro fin deformation due to micro EDM. Procedia CIRP , 42, 569–574. doi:10.1016/j.procir.2016.02.253
  • Zhang, Y. F. , Tang, Y. H. , Wang, N. , Yu, D. P. , Lee, C. S. , Bello, I. , & Lee, S. T. (1998). Silicon nanowires prepared by laser ablation at high temperature. Applications Physical Letters , 72, 1835–1837. doi:10.1063/1.121199
  • Zhong, X. , Wang, T. , Liu, J. , Zhang, Y. , & Cheng, Z. (2006). Computational fluid dynamics simulation for on-chip cooling with carbon nanotube micro-fin architectures . Kowloon, China: IEEE.