3,810
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Design and implementation of aquaculture resource planning using underwater sensor wireless network

, & |
Article: 1542576 | Received 13 Feb 2018, Accepted 26 Oct 2018, Published online: 19 Nov 2018

References

  • Alamri, A. , Ansari, W. S. , Hassan, M. M. , Hossain, M. S. , Alelaiwi, A. , & Hossain, M. A. (2013). A survey on sensor-cloud: Architecture, applications, and approaches. International Journal of Distributed Sensor Networks , 9(2).
  • Alippi, C. , Camplani, R. , Galperti, C. , & Roveri, M. (2011). A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. IEEE Sensors Journal , 11, 45–55. doi:10.1109/JSEN.2010.2051539
  • Asian sea bass . (2017, October 10). Retrieved from: http://agritech.tnau.ac.in/fishery/fish_seafishes.html
  • Bosma, R. H. , & Verdegem, M. C. J. (2011). Sustainable aquaculture in ponds: Principles, practices and limits. Livestock Science , 9, 58–68. doi:10.1016/j.livsci.2011.03.017
  • Cella, U. M. , Johnstone, R. , & Shuley, N. (2009). Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results. Proceedings of the Fourth ACM International Workshop on Underwater Networks , Berkeley, California, USA, 1–8.
  • Chien, Y. (1992).Water quality requirements and managements for marine shrimp water culture. Proceedings of the Special Session on Shrimp Farming . World Aquaculture Society, USA, pp. 144–156.
  • Davies, B. , & Bromage, N. (2002). The effects of fluctuating seasonal and constant water temperatures on the photoperiodic advancement of reproduction in female rainbow trout, Oncorhynchus mykiss. Aquaculture , 205, 183–200. doi:10.1016/S0044-8486(01)00665-2
  • Digi Xbee-ZigBee . (2017, November 12). Retrieved from: https://www.digi.com/lp/xbee.
  • DS18B20-Programmable Resolution 1-Wire Digital Thermometer . (2017, November 12). Retrieved from: https://www.maximintegrated.com/en/products/analog/sensors-and- sensor-interface/DS18B20.html
  • Durao, F. , Carvalho, J. F. S. , Fonseka, A. , & Vinicius Cardoso, G. (2014). A systematic review on cloud computing. The Journal of Supercomputing , 68, 1321–1346. doi:10.1007/s11227-014-1089-x
  • Epinosa-Faller, F. J. , & Rendon-Rodriguez, G. E. (2012). A ZigBee wireless sensor network for monitoring an aquaculture recirculating system. Journal of Applied Research and Technology , 10, 380–387.
  • Ertuð, K. , & Mirza, I. (2010). Water quality: physical, chemical and biological characteristics (Chapter 3 (pp. 1–96). New York, NY: Nova Science Publishers.
  • Fazio, M. , Celesti, A. , Puliafito, A. , & Villari, M. (2015). Big data storage in the cloud for smart environment monitoring. Procedia Computer Science , 52, 500–506. doi:10.1016/j.procs.2015.05.023
  • Flammini, A. , & Sisinni, E. (2014). Wireless sensor networking in the internet of things and cloud computing era. Procedia Engineering , 87, 672–679. doi:10.1016/j.proeng.2014.11.577
  • Food and Agriculture Organization of the United Nations . National Aquaculture Sector Overview: India. (2018, February 12). Retrieved from: http://www.fao.org/fishery/countrysector/naso_india/en.
  • Glasgow, H. B. , MBurkholder, J. , EReed, R. , JLewitus, A. , & Joseph, E. (2004). Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. Journal of Experimental Marine Biology and Ecology , 300(409–448). doi:10.1016/j.jembe.2004.02.022
  • Haijiang, T. , Shuangyin, L. , Daoliang, L. , Qisheng, D. , & Daokun, M. (2012). A multi-environmental factor monitoring system for aquiculture based on wireless sensor networks. Sensor Letters , 10, 265–270. doi:10.1166/sl.2012.1851
  • Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering , 34, 344–363. doi:10.1016/j.aquaeng.2005.08.009
  • Indian prawns . (2017, May 16). Retrieved from: http://agritech.tnau.ac.in/fishery/fish_freshwaterprawn.html
  • José Juan Carbajal Hernández, L. P. , Fernández, S. , & Oleksiy, P. (2011). Assessment and prediction of the water quality in shrimp culture using signal processing techniques. Aquaculture International , 19, 1083–1104. doi:10.1007/s10499-011-9426-z
  • Kanagaraj, E. , Kamarudin, L. M. , Zakaria, A. , Gunasagaran, R. , & Shakaff, A. Y. M. (2015). Cloud-based remote environmental monitoring system with distributed WSN weather stations. 2015 IEEE SENSORS , Busan, South Korea, 1–4.
  • Kwon, Y.-W. , & Tilevich, E. (2013). Cloud refactoring: Automated transitioning to cloud-based services. Automated Software Engineering , 21, 345–372. doi:10.1007/s10515-013-0136-9
  • Lin, Q. , Jian, Z. , Mark, X. , Zetian, F. , Wei, C. , & Xiaoshuan, Z. (2011). Developing WSN-based traceability system for recirculation aquaculture. Mathematical and Computer Modelling , 53, 2162–2172. doi:10.1016/j.mcm.2010.08.023
  • Lloret, J. , Garcia, M. , Sendra, S. , & Lloret, G. (2015). An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommunication Systems , 60, 67–84. doi:10.1007/s11235-014-9922-3
  • Longdill, P. C. , Healy, T. R. , & Black, K. P. (2008). An integrated GIS approach for sustainable aquaculture management area site selection. Ocean and Coastal Management , 51, 612–624. doi:10.1016/j.ocecoaman.2008.06.010
  • MCP3008 10-bit Analog-to-Digital Converter . (2017, November 12). Retrieved from: http://www.microchip.com/wwwproducts/en/MCP3008
  • Mo, L. , Yang, Z. , & Liu, Y. (2013). Sea depth measurement with restricted floating sensors. ACM Transactions on Embedded Computing Systems , 13, 21.
  • Mridula, R. , Rajesh, K. M. , & Reddy, H. R. V. (2014). Assessment of Microbial population in relation with hydrographical characteristics in Netravati and Gurupur Estuaries ofMangalore, South-West coast of India. The Ecoscan , 8, 253–256.
  • Dissolved Oxygen . (2017, November 12). Retrieved from: http://www.sansel.in/pdf/Other-Marketing-Products/Dissolved-Oxygen-Meter.pdf
  • Pérez, O. M. , Ross, L. G. , Telfer, T. C. , & Campo Barquin, L. M. (2003). Water quality requirements for marine fish cage site selection in Tenerife (Canary Islands): Predictive modeling and analysis using GIS. Aquaculture , 224, 51–68. doi:10.1016/S0044-8486(02)00274-0
  • pHT 692 . (2017, November 12). Retrieved from: http://www.sansel.net/products/analytical-instruments/ph-indicator-transmitter-manufacturer-in-india/
  • Postolache, O. , Pereira, J. D. , & Silva Girão, P. (2014). Wireless sensor network-based solution for environmental monitoring: Water quality assessment case study. IET Science,Measurement and Technology , 8, 610–616. doi:10.1049/iet-smt.2013.0136
  • Rajesh, V. , Pandithurai, O. , & Mageshkumar, S. (2010). Wireless sensor node data on cloud. 2010 International Conference on communication Control and Computing technologies , Ramanathapuram, India, 476–481.
  • Raspberry pi B Model . (2017, May 12). Retrieved from: https://www.raspberrypi.org/products/model-b/
  • Salinity sensor . (2017, May 12). Retrieved from: https://www.vernier.com/products/sensors/sal-bta/
  • Sendra, S. , Lloret, J. , Rodrigues, J. J. P. C. , & Aguiar, J. M. (2013). Underwater wireless communications in freshwater at 2.4 GHz. IEEE Communications Letters , 17, 1794–1797. doi:10.1109/LCOMM.2013.072313.131214
  • Shah, B. (2015). Cloud environment controls assessment framework. In Cloud technology: Concepts, methodologies, tools, and applications (pp. 580–606),  Information Resources Management Association, USA. IGI Global.
  • Shahadat Hossaina, M. , & Chowdhurya, S. R. (2009). Integration of GIS and multicriteria decision analysis for urban aquaculture development in Bangladesh. Landscape and Urban Planning , 90, 119–133. doi:10.1016/j.landurbplan.2008.10.020
  • Shetty, A. , Venkateshwarlu, M. , & Muralidharan, M. (2015). Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India. International Journal of Aquatic Biology , 3, 42–51.
  • SIM300 GSM Modem . (2017, May 20). Retrieved from: http://www.nskelectronics.com/sim300_modem_with_rs232.html
  • Simbeye, D. S. , Zhao, J. , & Yang, S. (2014). Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments. Computers and Electronics in Agriculture , 102, 31–42. doi:10.1016/j.compag.2014.01.004
  • Suakanto, S. , Supangkat, S. H. , Saragih, S. R. , Nugroho, T. A. , & Nugraha, I. G. B. B. (2012). Environmental and disaster sensing using cloud computing infrastructure. 2012 International Conference on Cloud Computing and Social Networking (ICCCSN), Bandung, West Java, Indonesia, 1–6.doi: 10.1109/ICCCSN.2012.6215712S.
  • Thomas, S. Capture based aquaculture of red snapper Lutjanus argentimaculatus in cages. (2017, September 12). Retrieved from: eprints.cmfri.org.in/9724/1/Sujitha.pdf
  • Tigershrimp . (2017, May 12). Retrieved from: http://agritech.tnau.ac.in/fishery/fish_shrimps.html
  • Turbidity Sensor - TSD-10 . (2017, November 12). Retrieved from: http://amphenol sensors.com/en/products/temperature/turbidity
  • Wang, X. , Longquan, M. , & Yang, H. (2011). Online water monitoring system based on ZigBee and GPRS. Procedia Engineering , 15, 2680–2684. doi:10.1016/j.proeng.2011.08.504
  • Wireless water monitoring system . (2017, February 12). Retrieved from: https://www.ipi-singapore.org/technology-offers/wireless-water-monitoring-system-aquaculture-and-environmental-professionals
  • Pengfei, Y. , Huiba, L. , Peng, Y. , & Ziyang, L. (2013). An integration framework of cloud computing with wireless sensor networks. Ubiquitous Information Technologies and Application , 214, 381–387.
  • Zhu, X. , Daoliang, L. , Dongxian, H. , Wang, J. , Daokun, M. , & Feifei, L. (2010). A remote wireless system for water quality online monitoring in intensive fish culture. Computers and Electronics in Agriculture , 715, 53–59.
  • Ztable . (2017, February 12). Retrieved from http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf