2,630
Views
17
CrossRef citations to date
0
Altmetric
Research Article

The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution

, ORCID Icon, , & | (Reviewing editor)
Article: 1584939 | Received 01 Dec 2018, Accepted 17 Feb 2019, Published online: 22 Mar 2019

References

  • Altıntıg, E., Altundag, H., Tuzen, M., & Sarı, A. (2017). Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chemical Engineering Research and Design, 122, 151–13. doi:10.1016/j.cherd.2017.03.035
  • Arami, M., Limaee, N. Y., Mahmoodi, N. M., & Tabrizi, N. S. (2005). Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science, 288(2), 371–376. doi:10.1016/j.jcis.2005.03.020
  • Asfaram, A., Ghaedi, M., Hajati, S., Rezaeinejad, M., Goudarzi, A., & Purkait, M. K. (2015). Rapid removal of Auramine-O and Methylene blue by ZnS:Cu nanoparticles loaded on activated carbon: A response surface methodology approach. Journal of the Taiwan Institute of Chemical Engineers, 53, 80–91. doi:10.1016/j.jtice.2015.02.026
  • Avetta, P., Sangermano, M., Lopez-Manchado, M., & Calza, P. (2015). Use of graphite oxide and/or thermally reduced graphite oxide for the removal of dyes from water. Journal of Photochemistry and Photobiology A: Chemistry, 312, 88–95. doi:10.1016/j.jphotochem.2015.07.015
  • Badenhorst, H. (2014). Microstructure of natural graphite flakes revealed by oxidation: Limitations of XRD and Raman techniques for crystallinity estimates. Carbon, 66, 674–690. doi:10.1016/j.carbon.2013.09.065
  • Carvallho, M. N., Da Silva, K. S., Sales, D. C. S., Freire, E. M. P. L., Sobrinho, M. A. M., & Ghislandi, M. G. (2016). Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: Kinetic and equilibrium studies. Water Science and Technology, 73(9), 2189–2198. doi:10.2166/wst.2016.073
  • Esfandiar, N., Nasernejad, B., & Ebadi, T. (2014). Removal of Mn(II) from groundwater by sugarcane bagasse and activated carbon (a comparative study): Application of response surface methodology (RSM). Journal of Industrial and Engineering Chemistry, 20(5), 3726–3736. doi:10.1016/j.jiec.2013.12.072
  • Goshadrou, A., & Moheb, A. (2011). Continuous fixed bed adsorption of C.I. Acid blue 92 by exfoliated graphite: An experimental and modeling study. Desalination, 170–176. doi:10.1016/j.desal.2010.10.058
  • Hameed, B. H., & Hakimi, H. (2008). Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. Biochemical Engineering Journal, 39(2), 338–343. doi:10.1016/j.bej.2007.10.005
  • Inagaki, M., Konno, H., Toyoda, M., Moriya, K., & Kihara, T. (2000). Sorption and recovery of heavy oils by using exfoliated graphite Part II: Recovery of heavy oil and recycling of exfoliated graphite. Desalination, 128(3), 213–218. doi:10.1016/S0011-9164(00)00035-7
  • Ion, A. C., Alpatova, A., Ion, I., & Culetu, A. (2011). Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Materials Science and Engineering: B, 176(7), 588–595. doi:10.1016/j.mseb.2011.01.018
  • Li, J. T., Li, M., Li, J. H., & Sun, H. W. (2007a). Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation. Ultrasonics Sonochemistry, 14(2), 241–245. doi:10.1016/j.ultsonch.2006.04.005
  • Li, J. T., Li, M., Li, J. H., & Sun, H. W. (2007b). Removal of disperse blue 2BLN from aqueous solution by combination of ultrasound and exfoliated graphite. Ultrasonics Sonochemistry, 14(1), 62–66. doi:10.1016/j.ultsonch.2006.01.006
  • Li, M., Li, J. T., & Sun, H. W. (2008b). Decolorizing of azo dye reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation. Ultrasonics Sonochemistry, 15, 717–723. doi:10.1016/j.ultsonch.2007.10.001
  • Li, M., Li, J.-T., & Sun, H.-W. (2008a). Sonochemical decolorization of acid black 210 in the presence of exfoliated graphite. Ultrasonics Sonochemistry, 15(1), 37–42. doi:10.1016/J.ULTSONCH.2007.01.004
  • Phuong Quynh, B. T., Kim, S. H., Que Minh, D. T., Mong Diep, N. T., Van Thinh, P., & Thuong, N. T. (2017). Magnetic NiFe2O4 decorated-exfoliated graphite for adsorptive removal of anionic dyes and cationic dyes from aqueous solution. Desalination and Water Treatment, 82, 101–113. doi:10.5004/dwt.2017.20936
  • Roy, A., Chakraborty, S., Kundu, S. P., Adhikari, B., & Majumder, S. B. (2012). Adsorption of anionic-azo dye from aqueous solution by lignocellulose-biomass jute fiber: Equilibrium, kinetics, and thermodynamics study. Industrial & Engineering Chemistry Research, 51(37), 12095–12106. doi:10.1021/ie301708e
  • Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495–504. doi:10.1016/j.jece.2017.12.028
  • Sykam, N., Jayram, N. D., & Rao, G. M. (2018). Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism. Journal of Water Process Engineering, 25(January), 128–137. doi:10.1016/j.jwpe.2018.05.013
  • Vinh, N. H., Hieu, N. P., Van Thinh, P., Diep, N. T. M., Thuan, V. N., Trinh, N. D., … Quynh, B. T. P. (2018). Magnetic NiFe2O4/Exfoliated graphite as an efficient sorbent for oils and organic pollutants. Journal of Nanoscience and Nanotechnology, 18(10), 6859–6866. doi:10.1166/jnn.2018.15718
  • Wei, X. H., Liu, L., Zhang, J. X., Shi, J. L., & Guo, Q. G. (2009). HClO4-graphite intercalation compound and its thermally exfoliated graphite. Materials Letters, 1618–1620. doi:10.1016/j.matlet.2009.04.030
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. doi:10.1016/j.cis.2014.04.002
  • Zhao, M., & Liu, P. (2009). Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination, 249(1), 331–336. doi:10.1016/j.desal.2009.01.037
  • Zheng, Y. P., Wang, H. N., Kang, F. Y., Wang, L. N., & Inagaki, M. (2004). Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles. Carbon, 42, 2603–2607. doi:10.1016/j.carbon.2004.05.041