4,503
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Quantitative analysis of soil erosion causative factors for susceptibility assessment in a complex watershed

ORCID Icon, , , , , & | (Reviewing editor) show all
Article: 1594506 | Received 11 May 2018, Accepted 10 Mar 2019, Published online: 25 Apr 2019

References

  • Abdulkadir, T. S., Muhammad, M. R., Khamaruzaman, W. Y., & Ahmad, H. M. (2017a). Assessing the influence of terrain characteristics on spatial distribution of satellite derived land surface parameters in mountainous areas. 37th IAHR World Congress, Kuala Lumpur Malaysia, pp. 2897–19.
  • Abdulkadir, T. S., Muhammad, M. R., Khamaruzaman, W. Y., & Ahmad, H. M. (2017b). Geostatistical based susceptibility mapping of soil erosion and optimization of its causative factors: A conceptual framework. Journal of Engineering Science and Technology, 12(11), 2880–2895.
  • Abdulkadir, T. S., Muhammad, R. M., Khamaruzaman, W. Y., & Ahmad, M. H. (2018). Geospatial assessment of soil moisture distribution in Cameron highlands using GIS and remote sensing techniques. Malaysian Construction Research Journal, 5(3), 14–27.
  • Akgün, A., & Türk, N. (2011). Mapping erosion susceptibility by a multivariate statistical method: A case study from the Ayvalık region, NW Turkey. Computers & Geosciences, 37(9), 1515–1524. doi:10.1016/j.cageo.2010.09.006
  • Alaaddin, Y., Recep, G., & Abdullah, E. (2008). Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya Dam watershed in Kahramanmaras. Turkey Sensors, 8, 4851–4865. doi:10.3390/s8084851
  • Ali, S. A., & Hagos, H. (2016). Estimation of soil erosion using USLE and GIS in Awassa catchment, Rift valley, Central Ethiopia. Geoderma Regional, 7(2), 159–166. doi:10.1016/j.geodrs.2016.03.005
  • Aminuddin, B., Ghulam, M., Abdullah, W. Y. W., Zulkefli, M., & Salama, R. (2005). Sustainability of current agricultural practices in the Cameron highlands, Malaysia. Water, Air, & Soil Pollution: Focus, 5(1), 89–101. doi:10.1007/s11267-005-7405-y
  • Angileri, S. E., Conoscenti, C., Hochschild, V., Märker, M., Rotigliano, E., & Agnesi, V. (2016). Water erosion susceptibility mapping by applying stochastic gradient treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 262, 61–76. doi:10.1016/j.geomorph.2016.03.018
  • Antonakis, J., & Dietz, J. (2011). Looking for validity or testing it? The perils of stepwise regression, extreme-scores analysis, heteroscedasticity, and measurement error. Personality and Individual Differences, 50(3), 409–415. doi:10.1016/j.paid.2010.09.014
  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology, 65(1), 15–31. doi:10.1016/j.geomorph.2004.06.010
  • Azemi, D., Rabiah, A. Z., Suhaily, S., Norain, F. A. I., Nur, F. M., & Noora, R. (2015). The study of thunderstorm and rainfall occurences over Pahang (in the period 1998–2012). Pahang Meteorological Office, Malaysia Meteorological Department, Malaysia, p. 121.
  • Bakker, M. M., Govers, G., van Doorn, A., Quetier, F., Chouvardas, D., & Rounsevell, M. (2008). The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology, 98(3), 213–226. doi:10.1016/j.geomorph.2006.12.027
  • Barrow, C., Clifton, J., Chan, N., & Tan, Y. (2005). Sustainable development in Cameron highlands, Malaysia. Malaysian Journal of Environmental Management, 6, 41–57.
  • Basith, A. (2011). Landslide susceptibility modelling under environmental changes: A case study of Cameron highlands, Malaysia. Malaysia: Universiti Teknologi Petronas.
  • Brunner, A., Park, S., Ruecker, G., Dikau, R., & Vlek, P. (2004). Catenary soil development influencing erosion susceptibility along a hillslope in Uganda. Catena, 58(1), 1–22. doi:10.1016/j.catena.2004.02.001
  • Castro, K. L., Sanchez-Azofeifa, G. A., & Rivard, B. (2003). Monitoring secondary tropical forest using space-born data: Implications for Central America. International Journal of Remote Sensing, 24, 1853–1894. doi:10.1080/01431160210154056
  • Chatterjee, S., Krishna, A., & Sharma, A. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71(1), 357–374. doi:10.1007/s12665-013-2439-3
  • Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56(3), 881–898. doi:10.1007/s11069-010-9598-2
  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., & Märker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204, 399–411. doi:10.1016/j.geomorph.2013.08.021
  • Conoscenti, C., Di Maggio, C., & Rotigliano, E. (2008). Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: A test in Southern Sicily. Natural Hazards, 46(3), 287–305. doi:10.1007/s11069-007-9188-0
  • Donati, L., & Turrini, M. (2002). An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: Application to an area of the apennines (Valnerina; Perugia, Italy). Engineering Geology, 63(3), 277–289. doi:10.1016/S0013-7952(01)00087-4
  • Dube, F., Nhapi, I., Murwira, A., Gumindoga, W., Goldin, J., & Mashauri, D. (2014). Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 67, 145–152. doi:10.1016/j.pce.2014.02.002
  • Farhan, Y., Zregat, D., & Farhan, I. (2013). Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: A case study of Kufranja Watershed, Northern Jordan. Journal of Water Resource and Protection, 5(12), 1247. doi:10.4236/jwarp.2013.512134
  • Field, A. (2013). Discovering statistics using IBM SPSS statistics. London: Sage Publications Ltd.
  • Ganasri, B., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. doi:10.1016/j.gsf.2015.10.007
  • Gasim, M. B., Surif, S., Toriman, M. E., Rahim, S. A., Elfithri, R., & Lun, P. I. (2009). Land-use change and climate-change patterns of the cameron highlands, Pahang, Malaysia. The Arab World Geographer, 12(1–2), 51–61.
  • Ghosh, K., De, S. K., Bandyopadhyay, S., & Saha, S. (2013). Assessment of soil loss of the dhalai river basin, Tripura, India using USLE. International Journal of Geoscience, 4, 11–23. doi:10.4236/ijg.2013.41002
  • Gournellos, T., Evelpidou, N., & Vassilopoulos, A. (2004). Developing an Erosion risk map using soft computing methods (case study at Sifnos island). Natural Hazards, 31(1), 63–83. doi:10.1023/B:NHAZ.0000020277.28291.06
  • He, D. (1999). Modeling of dominating factors to soil and water conservation. Fujian Forest Colloid Transactions, 19(1), 26–29.
  • Javed, M., Yasser, A., Shams Al-Deen, M., & Mohd, A. (2014). Risk assessment of soil erosion in semi-arid mountainous watershed in Saudi Arabia by RUSLE model coupled with remote sensing and GIS. Geocarto International, 29(8), 915–940. doi:10.1080/10106049.2013.868044
  • Kachouri, S., Achour, H., Abida, H., & Bouaziz, S. (2015). Soil erosion hazard mapping using analytic hierarchy process and logistic regression: A case study of haffouz watershed, central Tunisia. Arabian Journal of Geosciences, 8(6), 4257–4268. doi:10.1007/s12517-014-1464-1
  • Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M., Idris, W., & Rahim, S. (2013). Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Sciences Discussions, 10(4), 4567–4596. doi:10.5194/hessd-10-4567-2013
  • Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2015). Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology, 192, 101–112. doi:10.1016/j.enggeo.2015.04.004
  • Khosrokhani, M., & Pradhan, B. (2014). Spatio-temporal assessment of soil erosion at kuala lumpur metropolitan city using remote sensing data and GIS. Geomatics, Natural Hazards and Risk, 5(3), 252–270. doi:10.1080/19475705.2013.794164
  • Knofczynski, G. T., & Mundfrom, D. (2008). Sample sizes when using multiple linear regression for prediction. Educational and Psychological Measurement, 68(3), 431–442. doi:10.1177/0013164407310131
  • Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. doi:10.1002/ldr.472
  • Lewis, M. (2007). Stepwise versus hierarchical regression: Pros and cons. Annual meeting of the Southwest Educational Research Association, February 7, San Antonio.
  • Lim, H. Y. (2013). Save cameron Highlands, Malaysia. Retrieved from http://mymalaysiamyhome. blogspot.my/2013/10/savecameronhighland.html
  • Lucà, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134(3–4), 297–308. doi:10.1016/j.geomorph.2011.07.006
  • Magliulo, P. (2012). Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environmental Earth Sciences, 67(6), 1801–1820. doi:10.1007/s12665-012-1634-y
  • Mallick, J. (2014). Land characterization analysis of surface temperature of semi-arid mountainous city Abha, Saudi Arabia using remote sensing and GIS. Journal of Geographic Information System, 6(06), 664. doi:10.4236/jgis.2014.66055
  • Matori, A. N., Basith, A., & Harahap, I. S. H. (2011). Study of regional monsoonal effects on landslide hazard zonation in Cameron Highlands, Malaysia. Arabian Journal of Geosciences, 5(5), 1069–1084. doi:10.1007/s12517-011-0309-4
  • Mendicino, G. (1999). Sensitivity analysis on GIS procedures for the estimate of soil erosion risk. Natural Hazards, 20(2–3), 231–253. doi:10.1023/A:1008120231103
  • Meshesha, D. T., Tsunekawa, A., Tsubo, M., Ali, S. A., & Haregeweyn, N. (2014). Land-use change and its socio-environmental impact in Eastern Ethiopia’s highland. Regional Environmental Change, 14(2), 757–768. doi:10.1007/s10113-013-0535-2
  • Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems, 10(5), 629–641. doi:10.1080/02693799608902101
  • Mohd, E. T., Karim, O. A., Mokhtar, M., Gazim, M. B., & Abdullah, M. P. (2010). Use of InfoWork RS in modeling the impact of urbanisation on sediment yield in cameron highlands Malaysia. Nature and Science, 8(2), 67–73.
  • Ochoa, P., Fries, A., Mejía, D., Burneo, J., Ruíz-Sinoga, J., & Cerdà, A. (2016). Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena, 140, 31–42. doi:10.1016/j.catena.2016.01.011
  • Osborne, J. W., & Waters, E. (2002). Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research & Evaluation, 8, 2.
  • Pal, S. (2016). Identification of soil erosion vulnerable areas in Chandrabhaga river basin: A multi-criteria decision approach. Modeling Earth Systems and Environment, 2(1), 5. doi:10.1007/s40808-015-0052-z
  • Panagos, P., Borrelli, P., & Meusburger, K. (2015). A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5(2), 117–126. doi:10.3390/geosciences5020117
  • Parveen, R., & Kumar, U. (2012). Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in upper South Koel Basin, Jharkhand. Journal of Geographic Information System, 4(06), 588. doi:10.4236/jgis.2012.46061
  • Pedhazur, E. (1997). Multiple regression in behavioral research. Fort Worth, TX: Harcourt Brace.
  • Petrocelli, J. V. (2003). Hierarchical multiple regression in counseling research: Common problems and possible remedies. Measurement and Evaluation in Counseling and Development, 36(1), 9–22.
  • Pradhan, B. (2010). Application of an advanced fuzzy logic model for landslide susceptibility analysis. International Journal of Computational Intelligence Systems, 3(3), 370–381. doi:10.1080/18756891.2010.9727707
  • Prosdocimi, M., Cerdà, A., & Tarolli, P. (2016). Soil water erosion on mediterranean vineyards: A review. Catena, 141, 1–21. doi:10.1016/j.catena.2016.02.010
  • Pulice, I., Scarciglia, F., Leonardi, L., Robustelli, G., Conforti, M., Cuscino, M., … Critelli, S. (2009). Studio multidisciplinare di forme e processi denudazionali nell’area di Vrica (Calabria orientale). Memorie della Società Geografica Italiana, 87(I–II), 403–417.
  • Rahman, M. R., Shi, Z., & Chongfa, C. (2009). Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220(13), 1724–1734. doi:10.1016/j.ecolmodel.2009.04.004
  • Remondo, J., González, A., De Terán, J. R. D., Cendrero, A., Fabbri, A., & Chung, C.-J. F. (2003). Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Natural Hazards, 30(3), 437–449. doi:10.1023/B:NHAZ.0000007201.80743.fc
  • Renard, K. G., Foster, G. R., & Weesies, G. A. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) (Vol. 703, pp. 404). Washington, DC: Agriculture Handbook, USDA-ARS.
  • Shit, P. K., Paira, R., Bhunia, G., & Maiti, R. (2015). Modeling of potential gully erosion hazard using geo-spatial technology at garbheta block, West Bengal in India. Modeling Earth Systems and Environment, 1(2), 1–16. doi:10.1007/s40808-015-0001-x
  • Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. New York: Routledge.
  • Sujaul, I. M., Sahid, I., Gasim, M. B., Rahim, S. A., & Toriman, M. E. (2015). Prediction of soil and nutrient losses from the lake chini watershed, Pahang, Malaysia. Journal of Physical Science, 26(1), 53.
  • Sultan, S., Wu, R., & Ahmed, I. (2016). Impact of terrain and cloud cover on the distribution of incoming direct solar radiation over Pakistan. Meteorology and Energy Security: Simulations, Projections, and Management, 6(1), 70–77.
  • Sun, W., Shao, Q., Liu, J., & Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the loess plateau in China. Catena, 121, 151–163. doi:10.1016/j.catena.2014.05.009
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Boston: Pearson Education, Inc.
  • Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, 91–101. doi:10.1016/j.catena.2014.10.017
  • Vahabi, J., & Nikkami, D. (2008). Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research, 23(4), 376–386. doi:10.1016/S1001-6279(09)60008-1
  • Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena, 63(2), 132–153. doi:10.1016/j.catena.2005.06.001
  • Veihe, A. (2000). Sustainable farming practices: Ghanaian farmers’ perception of erosion and their use of conservation measures. Environmental Management, 25(4), 393–402.
  • Vijith, H., Suma, M., Rekha, V., Shiju, C., & Rejith, P. (2012). An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS. Arabian Journal of Geosciences, 5(4), 797–805. doi:10.1007/s12517-010-0265-4
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-A guide to conservation planning (p. 42). Washington, DC: U.S. Department of Agriculture, Agriculture Handbook, No. 537.
  • Wolka, K., Tadesse, H., Garedew, E., & Yimer, F. (2015). Soil erosion risk assessment in the Chaleleka wetland watershed, central Rift Valley of Ethiopia. Environmental Systems Research, 4(1), 5. doi:10.1186/s40068-015-0030-5
  • World Wildlife Fund Malaysia. (2002). Community and non-governmental organisation (NGO) partnership in highland catchment management in Malaysia. Stockholm: Global Water Partnership.
  • Xu, C. Y., & Chen, D. (2005). Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes, 19(18), 3717–3734. doi:10.1002/hyp.5853
  • Xue, X., Luo, Y., Zhou, X., Sherry, R., & Jia, X. (2011). Climate warming increases soil erosion, carbon and nitrogen loss with biofuel feedstock harvest in tallgrass prairie. Gcb Bioenergy, 3(3), 198–207. doi:10.1111/gcbb.2011.3.issue-3
  • Zar, J. (1999). Biostatistical analysis. Upper Saddle River, NJ, USA: Prentice Hall.