7,519
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Trends in an increased dependence towards hydropower energy utilization—a short review

, & | (Reviewing editor)
Article: 1631541 | Received 13 Feb 2019, Accepted 10 Jun 2019, Published online: 21 Jun 2019

References

  • Alam, F., Alam, Q., Reza, S., Khurshid-ul-Alam, S. M., Saleque, K., & Chowdhury, H. (2017). A review of hydropower projects in Nepal. Energy Procedia, 110, 581–14. doi:10.1016/j.egypro.2017.03.188
  • Amri, K. A., Halim, N., & Faiz Barchia, M. (2014). Criticality analysis of recharge area and land in the catchment area of musi hydropower Bengkulu Indonesia. APCBEE Procedia, 10, 235–240. doi:10.1016/j.apcbee.2014.10.045
  • Arias-Gaviria, J., van der Zwaan, B., Kober, T., & Santiago, A.-A. (2017). The prospects for small hydropower in Colombia. Renewable Energy, 107, 204–214. doi:10.1016/j.renene.2017.01.054
  • Aroonrat, K., & Wongwises, S. (2015). Current status and potential of hydro energy in Thailand: A review. Renewable and Sustainable Energy Reviews, 46, 70–78. doi:10.1016/j.rser.2015.02.010
  • Balkhair, K. S., & Rahman, K. U. (2017). Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale. Applied Energy, 188, 378–391. doi:10.1016/j.apenergy.2016.12.012
  • Behrouzi, F., Nakisa, M., Maimun, A., & Ahmed, Y. M. (2016). Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology. Renewable and Sustainable Energy Reviews, 62, 1270–1281. doi:10.1016/j.rser.2016.05.020
  • Bildirici, M. (2016). The relationship between hydropower energy consumption and economic growth. Procedia Economics and Finance, 38, 264–270. doi:10.1016/S2212-5671(16)30198-8
  • Bildirici, M. E., & Gökmenoğlu, S. M. (2017). Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries. Renewable and Sustainable Energy Reviews, 75, 68–85. doi:10.1016/j.rser.2016.10.052
  • Botelho, A., Ferreira, P., Fátima Lima, L. M., Pinto, C., & Sousa, S. (2017). Assessment of the environmental impacts associated with hydropower. Renewable and Sustainable Energy Reviews, 70, 896–904. doi:10.1016/j.rser.2016.11.271
  • Briones Hidrovo, Andrei, Javier Uche, & Amaya, M.-G. (2017). Accounting for GHG net reservoir emissions of hydropower in Ecuador. Renewable Energy, 112, 209–221. doi:10.1016/j.renene.2017.05.047
  • Chala, G., Aziz, A. A., & Hagos, F. (2018). Natural gas engine technologies: Challenges and energy sustainability issue. Energies, 11(11). doi:10.3390/en11112934.
  • Chala, G. T., Guangul, F. M., & Sharma, R. (2019). Biomass Energy in Malaysia-A SWOT Analysis, 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 401–406.
  • Chala, G. T., Lim, Y. P., Sulaiman, S. A., & Liew, C. L. (2018). Thermogravimetric analysis of empty fruit bunch. In MATEC web of conferences (Vol. 225, pp. 02002). EDP Sciences. doi: 10.1051/matecconf/201822502002
  • de Faria, F. A., Alex Davis, M., Severnini, E., & Jaramillo, P. (2017). The local socio-economic impacts of large hydropower plant development in a developing country. Energy Economics, 67, 533–544. doi:10.1016/j.eneco.2017.08.025.
  • de Faria, F. A. M., & Jaramillo, P. (2017). The future of power generation in Brazil: An analysis of alternatives to Amazonian hydropower development. Energy for Sustainable Development, 41, 24–35. doi:10.1016/j.esd.2017.08.001.
  • Eloranta, A. P., Finstad, A. G., Helland, I. P., Ugedal, O., & Power, M. (2018). Hydropower impacts on reservoir fish populations are modified by environmental variation. Science of the Total Environment, 618, 313–322. doi:10.1016/j.scitotenv.2017.10.268.
  • Erinofiardi, P. G., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., Mainil, A. K., & Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110, 316–321. doi:10.1016/j.egypro.2017.03.146.
  • Finger, D., Schmid, M., & Alfred, W. (2006). Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes. Water Resources Research, 42(8). doi:10.1029/2005WR004751
  • Guangul, F. M., & Chala, G. T. (2019a). Solar energy as renewable energy source: SWOT analysis. Paper read at 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman.
  • Guangul, F. M., & Chala, G. T. (2019b). SWOT analysis of wind energy as a promising conventional fuels substitute. Paper read at 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman.
  • Gunawardena, U. A. D. P. (2010). Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka. Energy Policy, 38(2), 726–734. doi:10.1016/j.enpol.2009.10.017.
  • Haidar, A. M. A., Senan, M. F. M., Noman, A., & Radman, T. (2012). Utilization of pico hydro generation in domestic and commercial loads. Renewable and Sustainable Energy Reviews, 16(1), 518–524. doi:10.1016/j.rser.2011.08.017.
  • The Himalayan Times. 2018. SWOT analysis of Nepal’s hydropower industry 2017 [cited 1 July 2018].
  • Hunt, J. D., Guillot, V., de Freitas, M. A. V., & Solari, R. S. E. (2016). Energy crop storage: An alternative to resolve the problem of unpredictable hydropower generation in Brazil. Energy, 101, 91–99. doi:10.1016/j.energy.2016.02.011.
  • Ioannidou, C., & O’Hanley, J. R. (2018). Eco-friendly location of small hydropower. European Journal of Operational Research, 264(3), 907–918. doi:10.1016/j.ejor.2016.06.067.
  • Kabo-bah, A. T., Diji, C. J., & Yeboah, K. A. (2018). Chapter 13 - hydropower generation in West Africa—The working solution manual, Sustainable hydropower in West Africa, Academic Press, 197–207. doi: 10.1016/B978-0-12-813016-2.00013-7
  • Kadier, A., Kalil, M. S., Pudukudy, M., Hasan, H. A., Mohamed, A., & Hamid, A. A. (2018). Pico hydropower (PHP) development in Malaysia: Potential, present status, barriers and future perspectives. Renewable and Sustainable Energy Reviews, 81, 2796–2805. doi:10.1016/j.rser.2017.06.084.
  • Kocaman, A. S., & Modi, V. (2017). Value of pumped hydro storage in a hybrid energy generation and allocation system. Applied Energy, 205, 1202–1215. doi:10.1016/j.apenergy.2017.08.129.
  • Kong, Y., Wang, J., Kong, Z., Song, F., Liu, Z., & Wei, C. (2015). Small hydropower in China: The survey and sustainable future. Renewable and Sustainable Energy Reviews, 48, 425–433. doi:10.1016/j.rser.2015.04.036.
  • Lazkano, I., Nøstbakken, L., & Pelli, M. (2017). From fossil fuels to renewables: The role of electricity storage. European Economic Review, 99, 113–129. doi:10.1016/j.euroecorev.2017.03.013.
  • Li, H.-B., Yang, X.-G., Zhang, X.-B., & Zhou, J.-W. (2017). Deformation and failure analyses of large underground caverns during construction of the Houziyan hydropower station, Southwest China. Engineering Failure Analysis, 80, 164–185. doi:10.1016/j.engfailanal.2017.06.037.
  • Lucena, A. F., Mohamad Hejazi, P., Vasquez-Arroyo, E., Sean Turner, A. C., Köberle, K. D., Pedro, R. R., … van der Bob, Z. (2018). Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil. Energy, 164, 1161–1177. doi:10.1016/j.energy.2018.09.005.
  • Ma’arof, M. I. N., Girma, C., & Ravichanthiran, S. (2018). A study on microbial fuel cell (MFC) with graphite electrode to power underwater monitoring devices. International Journal of Mechanical and Technology, 9(9), pp. 98–105.
  • Manzano-Agugliaro, F., Taher, M., Zapata-Sierra, A., Juaidi, A., & Montoya, F. G. (2017). An overview of research and energy evolution for small hydropower in Europe. Renewable and Sustainable Energy Reviews, (75), 476–489. doi:10.1016/j.rser.2016.11.013.
  • Marques, A. C., Fuinhas, J. A., & Pereira, D. A. (2018). Have fossil fuels been substituted by renewables? An empirical assessment for 10 European countries. Energy Policy, 116, 257–265. doi:10.1016/j.enpol.2018.02.021.
  • Moog, O. (1993). Quantification of daily peak hydropower effects on aquatic fauna and management to minimize environmental impacts. Regulated Rivers: Research & Management, 8(1‐2), 5–14. doi:10.1002/rrr.3450080105
  • Morales, S., Álvarez, C., Acevedo, C., Diaz, C., Rodriguez, M., & Pacheco, L. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50, 1650–1657. doi:10.1016/j.rser.2015.06.026.
  • Murni, S., Whale, J., Urmee, T., Davis, J. K., & Harries, D. (2013). Learning from experience: A survey of existing micro-hydropower projects in Ba’Kelalan, Malaysia. Renewable Energy, 60, 88–97. doi:10.1016/j.renene.2013.04.009.
  • Olukanni, D. O., & Salami, A. W. (2012). Assessment of impact of hydropower dams reservoir outflow on the downstream river flood regime–Nigeria’s experience. In Hydropower-practice and application. InTechOpen.
  • Sharma, R. H., & Awal, R. (2013). “Hydropower development in Nepal.”. Renewable and Sustainable Energy Reviews, 21, 684–693. doi:10.1016/j.rser.2013.01.013.
  • Sivongxay, A., Greiner, R., & Garnett, S. T. (2017). Livelihood impacts of hydropower projects on downstream communities in central Laos and mitigation measures. Water Resources and Rural Development, 9, 46–55. doi:10.1016/j.wrr.2017.03.001.
  • Song, C., Gardner, K. H., Klein, S. J. W., Souza, S. P., & Mo, W. (2018). Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and Sustainable Energy Reviews, 90, 945–956. doi:10.1016/j.rser.2018.04.014.
  • Sovacool, B. K., & Bulan, L. C. (2012). Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE). Renewable Energy, 40(1), 113–129. doi:10.1016/j.renene.2011.09.032.
  • Tang, W., Zongmin, L., & Yan, T. (2018). Sustainability risk evaluation for large-scale hydropower projects with hybrid uncertainty. Sustainability, 10(1). doi:10.3390/su10010138.
  • Varun, R. P., & Bhat, I. K. (2012). Life cycle greenhouse gas emissions estimation for small hydropower schemes in India. Energy, 44(1), 498–508. doi:10.1016/j.energy.2012.05.052.
  • Vassoney, E., Mochet, A. M., & Comoglio, C. (2017). Use of multicriteria analysis (MCA) for sustainable hydropower planning and management. Journal of Environmental Management, 196, 48–55. doi:10.1016/j.jenvman.2017.02.067.
  • Ximei, L., Ming, Z., Han, X., Lilin, P., & Deng, J. (2015). Small hydropower financing in China: External environment analyses, financing modes and problems with solutions. Renewable and Sustainable Energy Reviews, 48, 813–824. doi:10.1016/j.rser.2015.04.002.
  • Xingang, Z., Liu, L., Xiaomeng, L., Jieyu, W., & Pingkuo, L. (2012). A critical-analysis on the development of China hydropower. Renewable Energy, (44), 1–6. doi:10.1016/j.renene.2012.01.005.
  • Yaakob, O. B., Ahmed, Y. M., Elbatran, A. H., & Shabara, H. M. (2014). A review on micro hydro gravitational vortex power and turbine systems. Jurnal Teknologi, 69(7), 1-7.
  • Yah, N. F., Oumer, A. N., & Idris, M. S. (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews, 72, 228–239. doi:10.1016/j.rser.2017.01.068.
  • Zeng, R., Cai, X., Ringler, C., & Zhu, T. (2017). Hydropower versus irrigation—An analysis of global patterns. Environmental Research Letters, 12(3), 034006. doi:10.1088/1748-9326/aa5f3f
  • Zhang, J., Linyu, X., & Cai, Y. (2018). Water-carbon nexus of hydropower: The case of a large hydropower plant in Tibet, China. Ecological Indicators, (92), 107–112. doi:10.1016/j.ecolind.2017.06.019.