50,489
Views
117
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive study for robot navigation techniques

, & | (Reviewing editor)
Article: 1632046 | Received 12 Mar 2019, Accepted 14 May 2019, Published online: 09 Jul 2019

References

  • Abdallah, K. B., & Dan, Z. Q. (2013). A fuzzy logic behavior architecture controller for a mobile robot path planning in multi-obstacles environment. Research Journal of Applied Sciences, Engineering and Technology, 5(14), 3835–25.
  • Abdessemed, F., Benmahammed, K., & Monacelli, E. (2004). A fuzzy-based reactive controller for a non-holonomic mobile robot. ELSEVIER Robotics and Autonomous Systems, 47(1), 31–46. doi:10.1016/j.robot.2004.02.006
  • Abu Bakar, B. B., Mohmad, S. S., & Adam, I. (2016). Navigation of an automated guided vehicle based on Sugeno inference engine. Journal of Applied Sciences, 16, 570–579. doi:10.3923/jas.2016.570.579
  • Aghababa, M. P. (2012). “3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Applied Ocean Research, 38, 48–62. doi:10.1016/j.apor.2012.06.002
  • Ahmadzadeh, S., & Ghanavati, M. (2012). Navigation of mobile robot using the PSO particle swarm optimization. Journal of Academic and Applied Studies (JAAS), 2(1), 32–38.
  • Akka, K., & Khaber, F. (2018). Mobile robot path planning using an improved ant colony optimization. International Journal of Advanced Robotic Systems.
  • Al Mutib, K., & Mattar, E. (2011) Neuro-fuzzy controlled autonomous mobile robotics system. IEEE 13th International Conference on Modelling and Simulation, UK, p. 1–7.
  • Algabri, M., Mathkour, H., Hedjar, R., Alsulaiman, M., & Al Mutib, K. (2014). Self-learning mobile robot navigation in unknown environment using evolutionary learning. Journal of Universal Computer Science, 20(10), 1459–1468.
  • Algabri, M., Mathkour, H., & Ramdane, H. (2014). Mobile robot navigation and obstacle-avoidance using ANFIS in unknown environment. International Journal of Computer Applications, 91(14), 36–41. doi:10.5120/15952-5400
  • Algabri, M., Mathkour, H., Ramdane, H., & Alsulaiman, M. (2015). Comparative study of soft computing techniques for mobile robot navigation in an unknown environment. Computers in Human Behavior, 50, 42–56. doi:10.1016/j.chb.2015.03.062
  • Al-Jarrah, R., Shahzad, A., & Roth, H. (2015). Path planning and motion coordination for multi-robots system using probabilistic neuro-fuzzy. ELSEVIER IFAC-Papers Online, 48(10), 46–51. doi:10.1016/j.ifacol.2015.08.106
  • Allawi, Z. T., & Abdalla, T. Y. A. (2014) PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots. IEEE International Conference on Methods and Models in Automation and Robotics (MMAR), Poland, p. 33–39.
  • Al-Mayyahi, A., Wang, W., & Birch, P. (2014). Adaptive neuro-fuzzy technique for autonomous ground vehicle navigation. Robotics, 3(4), 349–370. doi:10.3390/robotics3040349
  • Al-Mutib, K., Abdessemed, F., Faisal, M., Ramdane, H., Alsulaiman, M., & Bencherif, M. (2016, September). Obstacle avoidance using wall-following strategy for indoor mobile robots. In 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA) (pp. 1–6). Ipoh, Perak: IEEE.
  • AL-Nayar, M. M., Dagher, K. E., & Hadi, E. A. (2019). A comparative study for wheeled mobile robot path planning based on modified intelligent algorithms. The Iraqi Journal for Mechanical and Materials Engineering, 19(1), 60–74.
  • Antonelli, G., Chiaverini, S., & Fusco, G. (2007). A fuzzy-logic-based approach for mobile robot path tracking. IEEE Transactions on Fuzzy Systems, 15(2), 211–221. doi:10.1109/TFUZZ.2006.879998
  • Arora, T., Gigras, Y., & Arora, V. (2014). Robotic path planning using genetic algorithm in dynamic environment. International Journal of Computer Application, 89(11), 8–12. doi:10.5120/15674-4422
  • Ayari, E., Hadouaj, S., & Ghedira, K. (2010) A fuzzy logic method for autonomous robot navigation in dynamic and uncertain environment composed with complex traps. IEEE 5th International Multi-conference on Computing in the Global Information Technology (pp. 18–23). Valencia, Spain.
  • Baklouti, N., John, R., & Alimi, A. M. (2012). Interval type-2 fuzzy logic control of mobile robots. Journal of Intelligent Learning Systems and Applications, 4(04), 291. doi:10.4236/jilsa.2012.44031
  • Baturone, I., Gersnoviez, A., & Barriga, A. (2014). Neuro-fuzzy techniques to optimize an FPGA embedded controller for robot navigation. In ELSEVIER Applied Soft Computing21 (pp. 95–106). Appl. Soft Comput.
  • Bento, L. C., Pires, G., & Nunes, U., A behaviour based fuzzy control architecture for path tracking and obstacle avoidance, Proceedings of the 5th Portuguese Conference on Automatic Control (Controlo 2002), Aveiro, 2002, pp 341–346.
  • Beom, H. R., & Cho, K. S. (1995). A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, 25(3), 464–477. doi:10.1109/21.364859
  • Bi, Z., Yimin, Y., & Yisan, X. (2009) Mobile robot navigation in unknown dynamic environment based on ant colony algorithm. In IEEE WRI Global Congress on Intelligent Systems, (pp. 98–102). doi:10.1007/s12177-009-9034-6
  • Boubertakh, H., Tadjine, M., Glorennec, P., & Labiod, S. (2008). A simple goal seeking navigation method for a mobile robot using human sense. Fuzzy logic and reinforcement learning. Journal of Automatic Control, 18(1), 23–27. doi:10.2298/JAC0801023B
  • Brahmi, H., Ammar, B., & Alimi, A. M. (2013) Intelligent path planning algorithm for autonomous robot based on recurrent neural networks. IEEE International Conference on Advanced Logistics and Transport (ICALT) (pp. 199–204). Tunisia.
  • Castillo, O, Aguilar, L. T, & Cárdenas, S. (2006). Fuzzy logic tracking control for unicycle mobile robots. Engineering Letters, 13(3), 73–82.
  • Castillo, O., Trujillo, L., & Melin, P. (2007). Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. SPRINGER Soft Computing, 11(3), 269–279. doi:10.1007/s00500-006-0068-4
  • Chohra, A., Farah, A., & Benmehrez, C. (1998). Neural navigation approach for Intelligent autonomous vehicles (IAV) in partially structured environments. Applied Intelligence, 8(3), 219–233. doi:10.1023/A:1008216400353
  • Choset, H. M. (2005). Principles of robot motion: Theory, algorithms, and implementations. MIT Press.
  • Contreras-Cruz, M. A., Ayala-Ramirez, V., & Hernandez-Belmonte, U. H. (2015). Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30, 319–328. doi:10.1016/j.asoc.2015.01.067
  • Cooke, R. A. (1983). Microcomputer control of free ranging robots. Proceedings of 13th International Symposium Industry Robots Robot, 7, 2, 109–120.
  • Cui, X., & Shi, H. (2011). A*-based pathfinding in modern computer games. International Journal of Computer Science and Network Security, 11(1), 125–130.
  • Dongshu, W., Yusheng, Z., & Wenjie, S. (2011) Behavior-based hierarchical fuzzy control for mobile robot navigation in dynamic environment. IEEE International Conference on Control and Decision Conference (CCDC) (pp. 2419–2424). Mianyang, China.
  • Elshamli, A., Abdullah, H. A., & Areibi, S. (2004) Genetic algorithm for dynamic path planning. In IEEE International Conference on Electrical and Computer Engineering (pp. 677–680). Canada.
  • Engedy, I., & Horvath, G. (2010) Artificial neural network based local motion planning of a wheeled mobile robot. In IEEE International Symposium on Computational Intelligence and Informatics(CINTI), Hungary, pp. 213–218.
  • Faisal, M., Hedjar, R., Al Sulaiman, M., & Al-Mutib, K. (2013). Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. INTECH International Journal of Advanced Robotic Systems, 10(1), 1–7.
  • Fan, X., Luo, X., Yi, S., Yang, S., & Zhang, H. (2003) Optimal path planning for mobile robots based on intensified ant colony optimization algorithm. IEEE International Conference on Robotics, Intelligent Systems and Signal Processing (pp. 131–136). China.
  • Farooq, U., Hasan, K. M., Abbas, G., & Asad, M. U. (2011) Comparative analysis of zero order Sugeno and Mamdani fuzzy logic controllers for obstacle avoidance behavior in mobile robot navigation. IEEE International Workshop on Current Trends in Information Technology (CTIT) (pp. 113–119). doi:10.1007/s10653-010-9355-1
  • Figueiredo, K., Vellasco, M., & Pacheco, M. A. (2005). Hierarchical neuro-fuzzy models based on reinforcement learning for intelligent agents. In International Work-Conference on Artificial Neural Networks (pp. 424–432). Berlin, Heidelberg: Springer.
  • Ganapathy, V., Jie, T. T. J., & Parasuraman, S. (2010) Improved Ant Colony Optimization for Robot Navigation. IEEE International Symposium on Mechatronics and its Applications (ISMA) (pp. 1–6). Sharjah, United Arab Emirates.
  • Ganapathy, V., Yun, S. C., & Ng, J. (2009) Fuzzy and neural controllers for acute obstacle avoidance in mobile robot navigation. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 1236–1241). Singapore.
  • Garcia, M. P., Montiel, O., Castillo, O., Sepulveda, R., & Melin, P. (2009). Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, 9(3), 1102–1110. doi:10.1016/j.asoc.2009.02.014
  • Gavrilov, A. V., & Lee, S. (2007)An architecture of hybrid neural network based navigation system for mobile robot. IEEE Seventh International Conference on Intelligent Systems Design and Applications (pp. 587–590). Brazil. doi:10.1007/s00101-007-1152-6
  • Ghorbani, A., Shiry, S., & Nodehi, A. (2009) Using genetic algorithm for a mobile robot path planning. In IEEE International Conference on Future Computer and Communication (pp. 164–166). Malaysia.
  • Glasius, R., Komoda, A., & Gielen, S. C. (1995). Neural network dynamics for path planning and obstacle avoidance. Neural Networks, 8(1), 125–133. doi:10.1016/0893-6080(94)E0045-M
  • Godjevac, J., & Steele, N. (1999). Neuro-fuzzy control of a mobile robot. Elsevier Neurocomputing, 28(1), 127–143. doi:10.1016/S0925-2312(98)00119-2
  • Gomez, E. J., Martinez Santa, F., & Martinez Sarmiento, F. H. A. (2013) Comparative study of geometric path planning methods for a mobile robot: Potential field and voronoi diagrams. In IEEE International Congress of Engineering Mechatronic and Automation (CIIMA),Colombia,p. 1–6.
  • Guan-Zheng, T. A. N., Huan, H., & Sloman, A. (2007). Ant colony system algorithm for real-time globally optimal path planning of mobile robots. Acta Automatica Sinica, 33 (3), 279–285.
  • Hassani, I., Maalej, I., & Rekik, C. (2018). Robot path planning with avoiding obstacles in known environment using free segments and turning points algorithm. Mathematical Problems in Engineering. doi:10.1155/2018/2163278
  • Hu, Y., Yang, S. X., Xu, L. Z., & Meng, M. Q. (2004) A knowledge based genetic algorithm for path planning in unstructured mobile robot environments. IEEE International Conference on Robotics and Biomimetics (ROBIO (pp. 767–772). China.
  • Huang, H. C. (2011, May). Design of optimal kinematic controller based on GA-ACO hybrid algorithm for four-wheeled omnidirectional mobile robots. In 2011 8th Asian Control Conference (ASCC) (pp. 902–907). Kaohsiung: IEEE.
  • Huang, H. C. (2014). FPGA-based parallel metaheuristic PSO algorithm and its application to global path planning for autonomous robot navigation. Journal of Intelligent & Robotic Systems, 76(3–4), 475–488. doi:10.1007/s10846-013-9884-9
  • Hui, N. B., & Pratihar, D. K. (2009). A comparative study on some navigation schemes of a real robot tackling moving obstacles. Robotics and Computer-Integrated Manufacturing, 25(4), 810–828. doi:10.1016/j.rcim.2008.12.003
  • Ibraheem, I. K., & Ajeil, F. H. (2018). Multi-objective path planning of an autonomous mobile robot in static and dynamic environments using a hybrid PSO-MFB optimisation algorithm. arXiv preprint arXiv. Cornell University, Computer science, Robotics, 1805, 00224.
  • Imen, M., Mohammad, M., & Shoorehdeli, M. A. (2011) Tracking control of mobile robot using ANFIS. IEEE International Conference on Mechatronics and Automation (pp. 422–427). China.
  • Janglova, D. (2004). Neural networks in mobile robot motion. International Journal of Advanced Robotic Systems, 1(1), 15–22. doi:10.5772/5615
  • Jia, S., Yan, J., Fan, J., Li, X., & Gao, L., “Multimodal intelligent wheelchair control based on fuzzy algorithm,” in Proceedings of the IEEE International Conference on Information and Automation (ICIA ’12) (pp. 582–587). Shenyang, China, June 2012.
  • Juang, C. F., & Chang, Y. C. (2011). Evolutionary-group-based particle-swarm optimized fuzzy controller with application to mobile-robot navigation in unknown environments. IEEE Transactions on Fuzzy Systems, 19(2), 379. doi:10.1109/TFUZZ.2011.2104364
  • Juang, C. F., Lai, M. G., & Zeng, W. T. (2015). Evolutionary fuzzy control and navigation for two wheeled robots cooperatively carrying an object in unknown environments. IEEE Transactions on Cybernetics, 45 (9), 1731–1743. doi:10.1109/TCYB.2014.2359966
  • Julliere, M., Place, H., Bazin, E. et al. (1988). A guidance system for a mobile robot. Journal of Intelligent and Robotic Systems, 1, 243. doi: 10.1007/BF00238768.
  • Kim, C. J., & Chwa, D. (2015). Obstacle avoidance method for wheeled mobile robots using interval type-2 fuzzy neural network. IEEE Transactions on Fuzzy Systems, 23(3), 677–687. doi:10.1109/TFUZZ.2014.2321771
  • Kubota, N., Morioka TKojima, F., & Fukuda, T. (2001). Learning of mobile robots using perception-based genetic algorithm. ELSEVIER Measurement, 29(3), 237–248. doi:10.1016/S0263-2241(00)00044-0
  • Lakehall, B., Amirat, Y., & Pontnau, J., Fuzzy Steering Control of a Mobile Robot, (1995), Industrial Automation and Control, Emerging Technologies, International IEEE/IAS (pp. 383–386). Taipei, Taiwan.
  • Lamini, C., Benhlima, S., & Elbekri, A. (2018). Genetic algorithm based approach for autonomous mobile robot path planning. Procedia Computer Science, 127, 180–189. doi:10.1016/j.procs.2018.01.113
  • Lee, C. H., & Chiu, M. H. (2009). Recurrent neuro fuzzy control design for tracking of mobile robots via hybrid algorithm. Elsevier Expert Systems with Applications, 36(5), 8993–8999. doi:10.1016/j.eswa.2008.11.051
  • Li, H., & Yang, S. X. (2003, Sep). A behavior-based mobile robot with a visual land-mark recognition system. IEEE Transactions on Mechatronics, 8(3), 390–400. doi:10.1109/TMECH.2003.816818
  • Li, T. H. S., Chang, S. J., & Chen, Y. X. (2003). Implementation of human-like driving skills by autonomous fuzzy behavior control on an FPGA-based car-like mobile robot. IEEE Transactions on Industrial Electronics, 50(5), 867–880. doi:10.1109/TIE.2003.817490
  • Li, T. H. S., Chang, S. J., & Tong, W. (2004a). Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Transactions on Fuzzy Systems, 12(4), 491–501. doi:10.1109/TFUZZ.2004.832526
  • Li, T. H. S., Chang, S.-J., & Tong, W. (2004b). Fuzzy target tracking control of autonomous robots by using infrared sensors. IEEE on Fuzzy Systems, 12(4), 491–501. doi:10.1109/TFUZZ.2004.832526
  • Li, W., Ma, C., & Wahl, F. M. (1997). A neuro-fuzzy system architecture for behavior-based control of a mobile robot in unknown environments. Fuzzy Sets and Systems, 87(2), 133–140. doi:10.1016/S0165-0114(95)00015-1
  • Liang, Y., Xu, L., Wei, R., & Hu, H. (2010) Adaptive fuzzy control for trajectory tracking of mobile robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4755–4760). Taiwan.
  • Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2017). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829–5839. doi:10.1007/s00500-016-2161-7
  • Liu, Q., Lu, Y. G., & Xie, C. X. (2006) Fuzzy obstacle-avoiding controller of autonomous mobile robot optimized by genetic algorithm under multi-obstacles environment. IEEE 6th World Congress on Intelligent Control and Automation (pp. 3255–3259). China.
  • Liu, X., & Gong, D. (2011). A comparative study of A-star algorithms for search and rescue in perfect maze,” 2011 International Conference on Electric Information and Control Engineering (pp.24–27), Wuhan.doi: 10.1109/ICEICE.2011.5777723
  • Lu, L., & Gong, D. (2008) Robot path planning in unknown environments using particle swarm optimization. IEEE International Conference on Natural Computation (ICNC) (pp. 422–426). China.
  • Luo, R. C., & Chang, C. C. (2012). Multisensor fusion and integration: A review on approaches and its applications in mechatronics. IEEE Transactions on Industrial Informatics, 8 (1), 49–60. doi:10.1109/TII.2011.2173942
  • Ma, X., Li, X., & Qiao, H. (2001). Fuzzy neural network-based real-time self-reaction of mobile robot in unknown environments. ELSEVIER Mechatronic, 11(8), 1039–1052. doi:10.1016/S0957-4158(00)00061-1
  • Maram Alajlan, K., Koub̂aa, A., Cĥaari, I., Hachemi Bennaceur, K., & Ammark, A. (2001). Global path planning for mobile robots in large-scale grid environments using genetic algorithms.
  • Marichal, G. N., Acosta, L., Moreno, L., Mendez, J. A., Rodrigo, J. J., & Sigut, M. (2001). Obstacle avoidance for a mobile robot: A neuro-fuzzy approach. Fuzzy Sets and Systems, 124(2), 171–179. doi:10.1016/S0165-0114(00)00095-6
  • Martinez, R., Castillo, O., & Aguilar, LT. (2009). Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. ELSEVIER Information Sciences, 179(13), 2158–2174. doi:10.1016/j.ins.2008.12.028
  • Masehian, E., & Amin-Naseri, M. R. (2004). A Voronoi diagram– visibility graph–potential field compound algorithm for robot path planning. Journal of Robotic System, 21(6), 275–300. doi:10.1002/rob.20014
  • Masehian, E., & Sedighizadeh, D. (2010) A multi-objective PSO-based algorithm for robot path planning. IEEE International Conference on Industrial Technology (ICIT) (pp. 465–470). Chile.
  • Meier, D., Tullumi, I., Stauffer, Y., Dornberger, R., & Hanne, T. (2017, August). A novel backup path planning approach with ACO. In 2017 5th International Symposium on Computational and Business Intelligence (ISCBI) (pp. 50–56). IEEE. doi:10.1016/j.ijcard.2017.04.017
  • Ming, L., Zailin, G., & Shuzi, Y. (1996). Mobile robot fuzzy control optimization using genetic algorithm. ELSEVIER Artificial Intelligence in Engineering, 10(4), 293–298. doi:10.1016/0954-1810(96)00006-4
  • Mohanta, J. C., Parhi, D. R., & Patel, S. K. (2011). Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation. Computers and Electrical Engineering, 37(6), 1058–1070. doi:10.1016/j.compeleceng.2011.07.007
  • Montaner, M. B., & Ramirez-Serrano, A. (1998). Fuzzy knowledge-based controller design for autonomous robot navigation. Elsevier Expert Systems with Applications, 14(1), 179–186. doi:10.1016/S0957-4174(97)00059-6
  • Motlagh, O., Nakhaeinia, D., Tang, S. H., Karasfi, B., & Khaksar, W. (2014). Automatic navigation of mobile robots in unknown environments. Neural Computing and Applications, 24(7), 1569–1581. doi:10.1007/s00521-013-1393-z
  • Mustafa, S., Ozdemirel Nur, E., & Sinan, K. (2000). Theory and methodology: A selforganizing neural network approach for the single AGV routing problem. European Journal of Operational Research, 121, 124–137.
  • Muthu, T., Thierry Gloude, R., Swaminathan, S., & Satish Kumar, L. (2012) Fuzzy logic controller for autonomous navigation. IEEE International Conference on Communications and Signal Processing (ICCSP) (pp. 81–92). India.
  • Nichols, E., McDaid, L. J., & Siddique, N. (2013). Biologically inspired SNN for robot control. IEEE Transactions on Cybernetics, 15(2), 115–128. doi:10.1109/TSMCB.2012.2200674
  • Omrane, H., Masmoudi, M. S., & Masmoudi, M. (2016). Fuzzy logic based control for autonomous mobile robot navigation. Computational Intelligence and Neuroscience, 2016, 1–10. doi:10.1155/2016/9548482
  • Park, K. H., Kim, Y. J., & Kim, J. H. (2001). Modular Q-learning based multi-agent cooperation for robot soccer. ELSEVIER Robotics and Autonomous Systems, 35(2), 109–122. doi:10.1016/S0921-8890(01)00114-2
  • Patino, H. D., & Carelli, R. (2004) Neural network-based optimal control for autonomous mobile vehicle navigation. In IEEE International Symposium on Intelligent Control (pp. 391–396). Taipei, Taiwan.
  • Payne, D. B., & Stern, J. R. (1985). Wavelength-switched passively coupled single-mode optical network,” in Proc. IOOC-ECOC (pp. 585–590). Boston, MA, USA.
  • Pradhan, S. K., Parhi, D. R., & Panda, A. K. (2006). Neuro-fuzzy technique for navigation of multiple mobile robots. Springer Fuzzy Optimization and Decision Making, 5(3), 255–288. doi:10.1007/s10700-006-0014-z
  • Pratihar, D. K., Deb, K., & Ghosh, A. (1999). A genetic-fuzzy approach for mobile robot navigation among moving obstacles. International Journal of Approximate Reasoning, 20 (2), 145–172. doi:10.1016/S0888-613X(98)10026-9
  • Purian, F. K., & Sadeghian, E. (2013) Mobile robots path planning using ant colony optimization and fuzzy logic algorithms in unknown dynamic environments. IEEE International Conference on Control, Automation, Robotics and Embedded Systems(CARE) (pp. 1–6). India.
  • Qu, H., Xing, K., & Alexander, T. (2013). An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Elsevier Neurocomputing, 120, 509–517. doi:10.1016/j.neucom.2013.04.020
  • Rai, N., & Rai, B. (2013). Neural network based closed loop speed control of DC motor using arduino Uno. International Journal of Engineering Trends and Technology, 4(2), 137–140.
  • Rossomando, F. G., & Soria, C. M. (2015). Design and implementation of adaptive neural PID for non linear dynamics in mobile robots. IEEE Latin America Transactions, 13(4), 913–918. doi:10.1109/TLA.2015.7106337
  • Rusu, C. G., Birou, I. T., & Szoke, E. (2010) Fuzzy based obstacle avoidance system for autonomous mobile robot. IEEE International Conference on Automation Quality and Testing Robotics (AQTR) (pp. 1–6). Romania.
  • Rusu, P., Petriu, E. M., Whalen, T. E., Cornell, A., & Spoelder, H. J. (2003). Behavior-based neuro-fuzzy controller for mobile robot navigation. IEEE Transactions on Instrumentation and Measurement, 52(4), 1335–1340. doi:10.1109/TIM.2003.816846
  • Saleh Alija, A. (2015). Analysis of Dijkstra’s and A* algorithm to find the shortest path (Doctoral dissertation), Universiti Tun Hussein Onn Malaysia.
  • Samsudin, K., Ahmad, F. A., & Mashohor, S. (2011). A highly interpretable fuzzy rule base using ordinal structure for obstacle avoidance of mobile robot. Applied Soft Computing, 11(2), 1631–1637. doi:10.1016/j.asoc.2010.05.002
  • Sariff, N. B., & Buniyamin, N. (2009) Comparative Study of Genetic Algorithm and Ant Colony Optimization Algorithm Performances for Robot Path Planning in Global Static Environments of Different Complexities. IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) (pp. 132–137). South Korea. doi:10.1177/1753193408095877
  • Schler, F. (2012). 3d path planning for autonomous aerial vehicles in constrained spaces (Ph.D. thesis), Department of Electronic Systems, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark.
  • Sedighi, K. H., Ashenayi, K., Manikas, T. W., Wainwright, R. L., & Tai, H.-M. Autonomous local path-planning for a mobile robot using a genetic algorithm.
  • Selekwa, M. F., Dunlap, D. D., Shi, D., & Collins, E. G. (2008). Robot navigation in very cluttered environments by preference-based fuzzy behaviors. Robotics and Autonomous Systems, 56(3), 231–246. doi:10.1016/j.robot.2007.07.006
  • Soltani, A. R., Tawfik, H., Goulermas, J. Y., & Fernando, T. (2002). Path planning in construction sites: Performance evaluation of the dijkstra, A*, and GA search algorithms. ELSEVIER Advanced Engineering Informatics, 16(4), 291–303. doi:10.1016/S1474-0346(03)00018-1
  • Soylu, M., Özdemirel, N. E., & Kayaligil, S. (2000). A self-organizing neural network approach for the single AGV routing problem. European Journal of Operational Research, 121(1), 124–137.
  • Surmann, H., Huser, J., & Peters, L. (1995). A fuzzy system for indoor mobile robot navigation, Fourth IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 95 (pp 83–88). doi:10.1177/014860719501900183
  • Wang, X., & Yang, S. X. A. (2003) Neuro-fuzzy approach to obstacle avoidance of a nonholonomic mobile robot. In IEEE/ASME International Conference on Advanced Intelligent Mechatronic (pp. 29–34). Japan.
  • Wong, C., Wang, H., & Li, S. (2008). PSO-based motion fuzzy controller design for mobile robots. International Journal of Fuzzy Systems, 10(1), 284–292.
  • Xiao, H., Liao, L., & Zhou, F. (2007) Mobile robot path planning based on Q-ANN. IEEE International Conference on Automation and Logistics, China, pp. 2650–2654.
  • Xiong, B., & Shiru, Q. U. (2010). Intelligent vehicle’s path tracking based on fuzzy control. Journal of Transportation Systems Engineering and Information Technology, 10(2), 70–75. doi:10.1016/S1570-6672(09)60034-9
  • Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path planning in complex 3D environments using a probabilistic roadmap method. International Journal of Automation and Computing, 10(6), pp. 525–533. doi:10.1007/s11633-013-0750-9
  • Yang, S. X., Hu, T., Yuan, X., Liu, P. X., & Meng, M. A. (2003). Neural network based torque controller for collision-free navigation of mobile robots. IEEE International Conference on Robotics and Automation (ICRA) (pp. 13–18). Taiwan.
  • Yang, S. X., & Meng, M. (2001). Neural network approaches to dynamic collision-free trajectory generation. IEEE Transactions on Systems. Man, and Cybernetics, Part B (Cybernetics), 31(3), 302–318. doi:10.1109/3477.931512
  • Yang Simon, X., & Max, M. (2000). An efficient neural network approach to dynamic robot motion planning. Neural Networks, 13, 143–148. doi:10.1016/S0893-6080(99)00103-3
  • Yilmaz, N. K., Evangelinos, C., Lermusiaux, P. F. J., & Patrikalakis, N. M. (2008). “Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE Journal of Oceanic Engineering, 33(4), pp. 522–537. doi:10.1109/JOE.2008.2002105
  • Yousfi, N., Rekik, C., Jallouli, M., & Derbel, N. (2010) Optimized fuzzy controller for mobile robot navigation in a cluttered environment. IEEE 7th International Multi-Conference on Systems, Signals and Devices (pp. 1–7). Amman, Jordan.
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-I. ELSEVIER Information Science, 8(3), 199–249. doi:10.1016/0020-0255(75)90036-5
  • Zhang, N., Beetner, D., Wunsch, D. C., Hemmelman, B., & Hasan, A. (2005) An embedded real-time neuro-fuzzy controller for mobile robot navigation. IEEE International Conference on Fuzzy Systems (pp. 319–324). USA.
  • Zhang, Q., & Li, S. (2007) A global path planning approach based on particle swarm optimization for a mobile robot. International Conference on Robotics, Control & Manufacturing Technology World Scientific and Engineering Academy and Society (WSEAS) (pp. 263–267). China.
  • Zhao, T., & Wang, Y. A. (2012) Neural-network based autonomous navigation system using mobile robots. IEEE 12th International Conference on Control, Automation, Robotics & Vision (ICARCV) (pp. 1101–1106). China.
  • Zhu, A., & Yang, S. X. (2007). Neurofuzzy-based approach to mobile robot navigation in unknown environments. IEEE transactions on systems. Man, 37(4), 610–621.
  • Zou, A. M., Hou, Z. G., & Fu, S. Y., (2006) Tan M neural networks for mobile robot navigation: A survey. Advances in Neural Networks-ISNN(pp. 1218–1226). China. doi:10.1037/0735-7044.120.6.1218