1,626
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Design and manufacturing of geotechnical laboratory tools used in physical modeling

ORCID Icon, & | (Reviewing editor)
Article: 1637622 | Received 19 Apr 2019, Accepted 09 Jun 2019, Published online: 11 Jul 2019

References

  • Al-Baghdadi, T., Brown, M. J., Knappett, J. A., & Al-Defae, A. H. (2017). Effects of vertical loading on lateral screw pile performance. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 170(3), 259–15.
  • Al-Defae, A. H., Caucis, K., & Knappett, J. A. (2013). Aftershocks and the whole-life seismic performance of granular slopes. Géotechnique, 63(14), 1230–1244. doi:10.1680/geot.12.P.149
  • Al-Defae, A. H., & Knappett, J. A. (2014). Centrifuge modeling of the seismic performance of pile-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 140(6), 04014014. doi:10.1061/(ASCE)GT.1943-5606.0001105
  • Al-Qaisi, Z. A. M. (2016). Optimal design of concrete gravity dams of random soil. PhD Thesis, Baghdad, Iraq: University of Technology.
  • Arshad, M. I., Tehrani, F. S., Prezzi, M., & Salgado, R. (2014). Experimental study of cone penetration in silica sand using digital image correlation. Géotechnique, 64(7), 561–569. doi:10.1680/geot.13.P.179
  • Bairrao, R., & Vaz, C. (2000). Shaking table testing of civil engineering structures—The LNEC 3D simulator experience. In Proceedings 12th World conference on earthquake engineering, Vol. 2129. Auckland, New Zealand.
  • Bertalot, D., Brennan, A. J., & Villalobos, F. A. (2013). Influence of bearing pressure on liquefaction-induced settlement of shallow foundations. Géotechnique, 63(5), 391–399. doi:10.1680/geot.11.P.040
  • Brennan, A. J., & Madabhushi, S. P. J. (2009). Amplification of seismic accelerations at slope crests. Canadian Geotechnical Journal, 45(5), 585–594.
  • Chen, H. T., Lee, C. J., & Chen, H. W. (1998, September 23–25). The traveling pluviation appartatus for sand specimen preparation. Centrifuge 98, Kimura, Kusakabe and Takemura EDS, Vol. 1 Balkima, Rotterdam, pp. 143-148.
  • Chen, X. L., Kato, N., Tsunaki, R., & Mukai, K. (2009). Prediction of slope failure due to earthquake. Chinese Science Bulletin, Institute of Geology, Chinese earthquake administrations Beijing, China. doi:10.1007/s11434-009-0283-3.
  • Chian, S. C., Stringer, M. E., & Madabhushi, S. P. G. (2010). Use of automatic sand pourers for loose sand models. In L. Springman & Seward (Eds.), 7th International conference of physical modelling in geotechnics (pp. 117-121). Rotterdam: CRC Press.
  • Donlon, W. P., & Hall, J. F. (1991). Shaking table study of concrete gravity dam monoliths. Earthquake Engineering and Structural Dynamics, 20, 769–786. doi:10.1002/eqe.4290200805
  • Emílio, F. T., Duarte, R. T., Carvalhal, F. J., Costa, C. O., Vaz, C. T., & Corrêa, M. R. (1989). The new LNEC shaking for earthquake resistance testing. Memoire LNEC, 757.
  • Ghobarah, A., & Ghaemian, M. (1998). Experimental study of small scale dam models. Journal of Engineering Mechanics, ASCE, 124, 1241–1248. doi:10.1061/(ASCE)0733-9399(1998)124:11(1241)
  • Harris, D., Snorteland, N., Dolen, T., & Travers, F. (2000). Shaking table 2-D models of a concrete gravity dam. Earthquake Engineering and Structural Dynamics, 29, 769–787. doi:10.1002/(SICI)1096-9845(200006)29:6<769::AID-EQE925>3.0.CO;2-7
  • Knappett, J. A., Reid, C., Kinmond, S., & O’Reilly, K. (2010). Small-scale modeling of reinforced concrete structural elements for use in a geotechnical centrifuge. Journal of Structural Engineering, 137(11), 1263–1271. doi:10.1061/(ASCE)ST.1943-541X.0000371
  • Lauder, K. (2011). The performance of pipeline ploughs. Ph.D. Thesis, University of Dundee, UK.
  • Lin, Y.-L., Cheng, X.-M., & Yang, G.-L. (2018). Shaking table test and numerical simulation on a combined retaining structure response to earthquake loading. Soil Dynamics and Earthquake Engineering, 108, 29–45. doi:10.1016/j.soildyn.2018.02.008
  • Ling, H. I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K., & Liu, H. (2005). Large-scale shaking table tests on modular-block reinforced soil retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 465–476. doi:10.1061/(ASCE)1090-0241(2005)131:4(465)
  • Madabhushi, S. P. G., Houghton, N. E., & Haigh, S. K. (2006, August). A new automatic sand pourer for model preparation at University of Cambridge. International conference on physical modelling in geotechnics, ICPMG 2006. Hong Kong: The Hong Kong University of Science and Technology.
  • Nakamura, T., Sekine, E., & Shirae, Y. (2011). Assessment of aseismic performance of ballasted track with large-scale shaking table tests. Quarterly Report of RTRI, 52(3), 156–162. doi:10.2219/rtriqr.52.156
  • Proulx, J., & Paultre, P. (1997). Experimental and numerical investigation of dam-reservior-foundation interaction for a large gravity dam. Canadian Journal of Civil Engineering, 24(01), 90–105. doi:10.1139/l96-086
  • Rad, N. S., & Tumay, M. T. (1987). Factors affecting sand specimen preparation by raining. Geotechnical Testing Journal, 10(1), 31–37. doi:10.1520/GTJ10136J
  • Rosca, B. (2008). Physical model method for seismic study of concrete dams. Buletinul Institutului Politehnic Dis Iasi, 14(3), 57–76.
  • Salgado, R., Bandini, P., & Karim, A. (2000). Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 126(5), 451–462. doi:10.1061/(ASCE)1090-0241(2000)126:5(451)
  • Shuang, L., Zuo, Z., Zhai, C., Xu, S., & Xie, L. (2016). Shaking table test on the collapse process of a three-story reinforced concrete frame structure. Engineering Structures, 118, 156–166. doi:10.1016/j.engstruct.2016.03.032
  • Tinawi, R., Leger, P., Leclerc, M., & Cipolla, G. (2000). Seismic safety of gravity dams: From shake table experiments to numerical analysis. Journal of Structural Engineering ASCE, 126, 518–529. doi:10.1061/(ASCE)0733-9445(2000)126:4(518)
  • Xiao, Y., Haitao, Y., Yong, Y., & Juyun, Y. (2015). Multi-point shaking table test of the free field under non-uniform earthquake excitation. Soil and Foundation Journal, 55(5), 985–1000. doi:10.1016/j.sandf.2015.09.031