1,881
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A bulk-driven, buffer-biased, gain-boosted amplifier for biomedical signal enhancement

ORCID Icon & | (Reviewing editor)
Article: 1658966 | Received 19 Jun 2019, Accepted 19 Aug 2019, Published online: 12 Sep 2019

References

  • Agrawal, G., & Sankaran, A. (2017). A modified bias scheme for highgain low-noise folded cascode OTAs International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE. INSPEC Accession Number: 17413811. doi:ISOCC.2016.7799786/EDSSC.2017.8126531
  • Bano, S., Narejo, G. B., Shah, A., & Syed, M. U. (2018). Power efficient fully differential bulk driven OTA for portable biomedical application. Electronics, 7(3), 41. doi:10.3390/electronics7030041
  • Blalock, B. J., Allen, P. E., & Rincon-Mora, G. A. (1998). Designing 1-V Op Amps using standard digital CMOS technology. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 45(7), 769–27. doi:10.1109/82.700924
  • Carrillo, J. M., Torelli, G., P-Aloe, R., Valverde, J. M., & D-Carrillo, J. F. (2010). Single-pair bulk driven CMOS input stage: A compact low-voltage analog cell for scaled technologies. Integration of VLSI Journal, 43, 251–257. doi:10.1016/j.vlsi.2010.03.002
  • Carvajal, R. G., R-Angulo, J., L-Martin, A. J., Torralba, A., Galan, J. A. G., Carlosena, A., & Chavero, F. M. (2005). The flipped voltage follower: A useful cell for low voltage low power circuit design. IEEE Transactions on Circuits and Systems I, 52, 1276–1291. doi:10.1109/TCSI.2005.851387
  • Cotrim, E. D. C., & Ferreira, L. H. C. (2012). An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integrated Circuits and Signal Processing, 71, 275–282. doi:10.1007/s10470-011-9618-5
  • El Mourabit, A., Lu, G., & Pittet, P. (2005). Wide linear range sub-threshold OTA for low power, low voltage and low frequency applications. IEEE Transactions on Circuits and Systems I, 52, 1481–1488. doi:10.1109/TCSI.2005.852011
  • Ferreira, L. H. C., Pimenta, T. C., & Moreno, R. L. (2007). An ultra–low-voltage ultra-low power MOS miller OTA with rail-to-rail input/output swing. IEEE Transactions on Circuits and Systems II: Express Briefs, 54, 843–847. doi:10.1109/TCSII.2007.902216
  • Guzinski, A., Bialko, M., & Matheau, J. C. (1987). Body-driven differential amplifier for application in continuous-time active C-filter. Proceedings of ECCD, 315–319.
  • Hariprasad, C., & Dejan., M. (2017). A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE Journal of Solid-state Circuits, 1–12. doi:10.1109/JSSC.2016.2645611
  • Karimi-Bidhendi, A., Malekzadeh-Arasteh, O., Lee, M.-C., McCrimmon, C. M., Wang, P. T., Mahajan, A., … Heydari, P. (2017). CMOS ultralow power brain signal acquisition front-ends: Design and human testing. IEEE Transactions on Biomedical Circuits and Systems, 11(5), 1111–1122. doi:10.1109/TBCAS.2017.2723607
  • Khateb, F., Biolek, D., Khatib, N., & Vávra, J. (2010). Utilizing the bulk-driven technique in analog circuit design. Proceedings of the IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), Vienna, Austria.
  • Kim, D., Kim, B., & Nam, S. (2015). A transconductor and tunable Gm-C high-pass filter linearization technique using feed forward Gm cancellation. IEEE Transactions on Circuits and Systems II: Express Briefs, 62, 1058–1062. doi:10.1109/TCSII.2015.2456611
  • Kim, H., & Cha, H.-K. (2018b, August). An ultra-low power low noise neural recording analog front-end IC for implantable devices. Journal of Semiconductor Technology and Science, 18(4), doi:10.5573/JSTS.2018.18.4.454
  • Kim, H. S., & Cha, H. K. (2018a). A low-noise biopotential CMOS amplifier IC using low power two stage OTA for neural recording applications. Journal of Circuits, Systems and Computers, 27(05), 1850068. doi:10.1142/S0218126618500688
  • Kim, H. S., & Hyouk-Kyu., C. (2016). A low-power, low-noise neural recording amplifier for implantable biomedical devices. 2016 International SoC Design Conference (ISOCC), Jeju, South Korea. 275–276. IEEE. INSPEC Accession Number: 16560669, doi:10.1109/ISOCC.2016.7799786.
  • Lee, C.-J., & Song, J.-I. (2019). A chopper stabilized current feedback instrumentation amplifier for EEG acquisition applications. Vol.7 IEEE ACCESS January, 2019.
  • Lee, S.-Y., & Cheng, C.-J. (2009). Systematic design and modeling of OTA-C filter for portable ECG detection. IEEE Transactions on Biomedical Circuits and Systems, 3, 53–64. doi:10.1109/TBCAS.2008.2007423
  • Lo, T.-Y., & Hung, C. C. (2007). A 1-V 50 MHz pseudo differential OTA with compensation of mobility reduction. IEEE Transactions on Circuits and Systems II, 54, 1047–1051. doi:10.1109/TCSII.2007.907559
  • Moreno, R. F. L., Baruqui, F. A. P., & Petraglia, A. (2015). Bulk-tuned Gm-C filter using current cancellation. Microelectronics, 46, 777–782. doi:10.1016/j.mejo.2015.05.010
  • Moulahcene, F., Bouguechal, N.-E., Benacer, I., & Hanfoug, S. (2014). Design of CMOS two-stage operational amplifier for ECG monitoring system using 90nm technology. International Journal of Bio-Science and Bio-Technology, 6, 55–66. doi:10.14257/ijbsbt.2014.6.5.07
  • Mythry, S. V., & Moni, D. J. (2018). 21nV/vHz 73 dB folded cascode OTA for electroencephalograph activity. Springer Soft Computing Systems,ICSCS. doi:10.1007/978-981-13-1936-5_44
  • Pulido, R., Santana-Abril, J., Sosa, J., & Montiel-Nelson, J. (2017). A 1.2-V 730-nW 10-Hz-3.5-kHz programmable biopotential front-end. Midwest Symposium on Circuits and Systems.  ISSN: 1565–1568. doi:10.1109/MWSCAS.2017.8053235
  • Raikos, G., & Vlassis, S. (2010). 0.8 V bulk-driven operational amplifier. Analog IntegrCirc Sig Process (springer), 63, 425–432. doi:10.1007/s10470-009-9425-4
  • Raj, N., Sharma, R. K., Jasuja, A., & Gard, R. (2010). A low power OTA for biomedical applications. Cyber Journals: Multidisciplinary Journals in Science and Technology. Journal of Selected Areas in Bioengineering (JSAB). December Edition.
  • Razaei, F., & Azhari, S. J. (2015). Transconductor linearization based on adaptive biasing of source degenerative MOS transistors. Circuits, Systems and Signal Processing, 34, 1149–1165. doi:10.1007/s00034-014-9902-6
  • Rodriguez-Villegas, E., Yufera, Y., & Reuda, A. (2004). A 1.25V micropower Gm-C filter based on FGMOS transistor operating in weak inversion. IEEE Journal of Solid-State Circuits, 39, 100–111. doi:10.1109/JSSC.2003.820848
  • Sadock, B. J., Sadock V. A. Kaplan and Sadock’s comprehensive textbook of psychiatry (Vol. 1, 10 ed.). Wolters Klumers. https://www.electronics-tutorials.ws/amplifier/amp_1.html
  • SamadSheikhaei, M. G. (2019). A low power low noise CMOS bio-potential amplifier for multi-channel neural recording with active DC-rejection and current sharing. Elsevier Microelectronics Journal 83 (2019): 197–211.
  • Sarin Vijay, M. D., & Moni, J. (2018). High gain low noise bulk driven folded cascode OTA for electroencephalograph activity. International Journal of Pure and Applied Mathematics, 120(6), 8065–8088.
  • Sharan, T., & Bhadauria, V. (2016). Sub-threshold, cascode compensated, bulk driven OTAs with enhanced gain and phase margin. Microelectronics Journal, 54, 150–165. doi:10.1016/j.mejo.2016.05.009
  • Sharan, T., & Bhadauria, V. (2017). Fully differential, bulk driven, class AB, sub-threshold OTA with enhanced slew rates and gain. Journal of Circuits, Systems, and Computers, 26, 1750001. doi:10.1142/S0218126617500013
  • Sharan, T., Chetri, P., & Bhadauria, V. (2018). Ultra-low-power bulk-driven fully differential subthreshold OTAs with partial positive feedback for Gm-C filters. Analog Integrated Circuits and Systems, 94, 427–447. doi:10.1007/s10470-017-1065-5
  • Szczepanski, S., Pankiewicz, B., Koziel, S., & Wojcikowski, M. (2015). Multiple output differential OTA with linearized bulk driven active-error feedback loop for continuous time filter applications. International Journal of Circuit Theory and Applications, 43, 1671–1686. doi:10.1002/cta.2034
  • Worapishet, A., & Naphaphan, C. (2003). Current feedback source degenerated CMOS transconductor with very high linearity. Electronic Letter, 39, 17–18. doi:10.1049/el:20030050
  • Yang, T., & Holleman, J. (2015). An ultralow-power low-noise CMOS biopotential amplifier for neural recording. Circuits and Systems II: Express Briefs, IEEE Transactions On, 62, 927–931. doi:10.1109/TCSII.2015.2457811
  • Zarifi, M. H., Frounchi, J. A., Tinati, M., Farshchi, S., & Judy, J. (2010). A low-noise low-power front-end amplifier for neural-recording applications. Biomedical Engineering: Applications, Basis and Communications, 22, 301–306.
  • Zhang, J., Chan, S.-C., & Lei., W. (2014). A 1.8 µW area-efficient bio-potential amplifier with 90 dB DC offset suppression. Midwest Symposium on Circuits and Systems (p. 286–289), The IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, Texas, USA. doi:10.1109/MWSCAS.2014.6908408.
  • Zuo, L., & Islam, S. K. (2013). Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2084–2091. doi:10.1109/TCSI.2013.2239161
  • Zuo, L., & Syed, K. I. (2013). Low- voltage bulk-driven operational amplifier with improved transconductance. IEEE Transactions on Circuits and Systems I: Regular Papers. doi:10.1109/TCSI.2013.2239161