4,196
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Large-scale offshore wind production in the Mediterranean Sea

ORCID Icon & | (Reviewing editor)
Article: 1661112 | Received 08 Apr 2019, Accepted 19 Aug 2019, Published online: 20 Sep 2019

References

  • ABB. (2011). Technical application papers no.13—Wind power plants. Retrieved from https://library.e.abb.com/public/92faf0c1913f5651c1257937002f88e8/1SDC007112G0201.pdf
  • Adam, F., & Kowal, J. (2013, September 2–6). Medgrid—An industrial initiative for the development of interconnections between the Mediterranean power grids. 15 European conference on power electronics and applications (EPE). Lille, France.
  • Aghabi Rivas, R. (2007, August 15). Optimization of offshore wind farm layouts (Master thesis). Technical University of Denmark, Lyngby.
  • Bachynski, E. E., & Moan, T. (2012). Design considerations for tension leg platform wind turbines. Marine Structures, 29(1), 89–21. doi:10.1016/j.marstruc.2012.09.001
  • Balog, I., Ruti, P. M., Tobin, I., Armenio, V., & Vautard, R. (2016). A numerical approach for planning offshore wind farms from regional to local scales rover the Mediterranean. Renewable Energy, 85, 395–405. doi:10.1016/j.renene.2015.06.038
  • Calaudi, R., Arena, F., Badger, M., & Sempreviva, A. M. (2013). Offshore wind mapping Mediterranean area using SAR. Energy Procedia, 40, 38–47. doi:10.1016/j.egypro.2013.08.006
  • Carbon Trust. (2015). Floating offshore wind: Market and technology review. Retrieved from https://www.carbontrust.com/media/670664/floating-offshore-wind-market-technology-review.pdf
  • Chodnekar, Y. P., Mandal, S., & Balakrishna Rao, K. (2015). Hydrodynamic analysis of floating offshore wind turbine. Procedia Engineering, 116, 4–11. doi:10.1016/j.proeng.2015.08.258
  • EWEA, European Wind Energy Association. (2013). Deep water—The next step for offshore wind energy. Retrieved from https://ewea.org
  • Furevik, B. R., Sempreviva, A. M., Cavaleri, L., Lefèvre, J.-M., & Transerici, C. (2011). Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea. Wind Energy, 14(3), 355–372. doi:10.1002/we.v14.3
  • Gamesa. (2019). Power curve gamesa G128-4500. Retrieved from https://www.thewindpower.net/turbine_en_81_gamesa_g128-4500.php
  • https://www.gebco.net/
  • Global Market Insights. Retrieved from https://www.gminsights.com/industry-analysis/offshore-wind-energy-market
  • Global Wind Atlas 1.0.. Retrieved from http://science.globalwindatlas.info/
  • Hou, P., Hu, W., Soltani, M., & Chen, Z. (2015). Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm. IEEE Transactions Sustainable Energy, 6(4), 1272–1282.
  • Jagdale, S., & Ma, Q. W. (2010, June 20–25). Practical simulation on motions of a TLP-type support structure for offshore wind turbines. The twentieth international offshore and polar engineering conference (ISOPE). Beijing. ISOPE-I-10-058.
  • Knapschaefer, J. (2016). Researchers develop offshore integrated mooring system for wind farms. Alternative energy 2016. Retrieved from https://www.enr.com/articles/39295-researchers-develop-offshore-integrated-mooring-system-for-wind-farms?v=preview
  • Koletsis, I., Kotroni, V., Lagouvardos, K., & Soukissian, T. (2016). Assessment of offshore wind speed and power potential over the mediterranean and the black seas under future climate changes. Renewable Sustainable Energy Review, 60, 234–245. doi:10.1016/j.rser.2016.01.080
  • Le Boulluec, M., Ohana, J., Martin, A., & Houmard, A. (2013, June 9–14). Tank testing of a new concept of floating offshore wind turbine. Proceedings of the ASME 2013 32nd international conference on ocean, offshore and arctic engineering OMAE2013. Nantes, France.
  • Liu, F., & Wang, Z. (2014). Offshore wind farm layout optimization using adapted genetic algorithm: A different perspective. Neural and evolutionary computing 2014. Retrieved from https://arxiv.org/pdf/1403.7178.pdf
  • Menendez, M., García-Deíz, M., Fita, L., Fernández, J., Méndez, F. J., & Gutiérrez, J. M. (2014). High-resolution sea wind hindcasts over the Mediterranean area. Climate Dynamics, 42(7–8), 1857–1872. doi:10.1007/s00382-013-1912-8
  • Nielson, F. G., Hanson, T. D., & Skaare, B. (2006, June 4–9). Integrated dynamic analysis of floating offshore wind turbines. Proceedings of 25th international conference on offshore mechanics and arctic engineering. Hamburg, Germany. OMAE2006-92291.
  • Nihei, Y., & Fujioka, H. (2010, June 6–11). Motion characteristics of a TLP type offshore wind turbine in waves and wind. Proceedings of the 29th international conference on ocean, offshore and arctic engineering. OMAE2010-21126. Shanghai, China.
  • OME - Observatoire Méditeranéen de l’Energie. (2016). GEM, global energy for the Mediterranean - Special: COOP22 edition, N°15 november 2016. Retrieved from http://www.ome.org/publications/gem-15-special-cop22-edition/
  • Riefolo, L., Del Jesus, F., García, R. G., Tomasicchio, G. R., & Pantusa, D. (2018, June 17–22). Wind/wave misalignment effects on mooring line tensions for a spar buoy wind turbine. ASME 2018 37th international conference on ocean, offshore and arctic engineering (pp. V001T01A063; 8). Madrid, Spain. Paper No. OMAE2018-77586, doi:10.1115/OMAE2018-77586
  • Roddier, D., Cermelli, C., & Weinstein, A. (2009, May-June 31–5). WINDFLOAT: A floating foundation for offshore wind turbines part I: Design basis and qualification process. Proceedings of the ASME2009 28th international conference on ocean, offshore and arctic engineering, Honolulu, Hawaii, OMAE2009-79229
  • Sanchez Perez-Moreno, S., Dykes, K., Merz, K. O., & Zaaijer, M. B. (2018). Multidisciplinary design analysis and optimisation of a reference offshore wind plant. The science of making torque from wind (TORQUE 2018), IOP conf. Series: Journal of Physics: Conference Series, 1037, 042004. doi:10.1088/1742-6596/1037/4/042004
  • Senvion. (2019). Power curve Senvion 62M-126 Retrieved from https://www.senvion.com/global/en/products-services/wind-turbines/6xm/62m126/
  • Sethuraman, L., & Venugopal, V. (2013). Hydrodynamic response of a stepped spar floating wind turbine: Numerical modelling and tank testing. Renewable Energy, 52, 160–174. doi:10.1016/j.renene.2012.09.063
  • Stewart, G., Lackner, M., Robertson, A., Jonkman, J., & Goupee, A. (2012, June 17–22). Calibration and validation of a fast floating wind turbine model of the deepcwind scaled tension-leg platform. Proceedings of 22° international offshore and polar engineering conference. Rhodes, Greece.
  • Sullivan, R. G., Leslie, K. B., Cothren, J., & Winters, L. S. (2013). Offshore wind turbine visibility and visual impact threshold distances. Environmental Practice, 15, 33–49. doi:10.1017/S1466046612000464
  • Tomasicchio, G. R., Armenio, E., D’Alessandro, F., Fonseca, N., Mavrakos, S. A., Penchev, V., … Jensen, P. M. (2012). Design of a 3D physical and numerical experiment on floating off-shore wind turbines. Proceeding of 33°Conference on Coastal Engineering, Santander, Spain, 2012 in Coastal Engineering Proceedings, 1(33), DOI:10.9753/icce.v33.structures.67
  • Tomasicchio, G. R., Avossa, A. M., Riefolo, L., Ricciardelli, F., Musci, E., D’Alessandro, F., & Vicinanza, D. (2017, June 25–30). Dynamic modelling of a spar buoy wind turbine. ASME 2017 36th international conference on ocean, offshore and arctic engineering, volume 10: Ocean renewable energy (pp. V010T09A083; 10). Trondheim, Norway. Paper No. OMAE2017-62246, doi:10.1115/OMAE2017-62246
  • Tomasicchio, G. R., D’Alessandro, F., Avossa, A. M., Riefolo, L., Musci, E., Ricciardelli, F., & Vicinanza, D. (2018). Experimental modelling of the dynamic behaviour of a spar buoy wind turbine. Renewable Energy, 127, 412–432. doi:10.1016/j.renene.2018.04.061
  • Utsunomiya, T., Nishida, E., & Sato, T. (2009, June 21–26). Wave response experiment on SPAR-type floating bodies for offshore wind turbine. Proceedings of the nineteenth (2009) international offshore and polar engineering conference. Osaka, Japan.
  • Vespe, M., Gibin, M., Alessandrini, A., Natale, F., Mazzarella, F., & Osio, G. C. (2016). Mapping EU fishing activities using ship tracking data. Journal of Maps, 12(sup1), 520–525. doi:10.1080/17445647.2016.1195299
  • Vestas. (2019). Power curve vestas V112-3.0. Retrieved from https://stopthesethings.files.wordpress.com/2015/12/vestas-v112-specs.pdf
  • Viselli, A. M., Goupee, A. J., & Dagher, H. J. (2014, June 8–13). Model test of a 1:8 scale floating wind turbine offshore in the Gulf of Maine. Proceedings of the ASME 2014 33rd international conference on ocean, offshore and arctic engineering OMAE2014. San Francisco, CA.
  • Wehemeyer, C., Ferri, F., Skourup, J., & Freegard, P. B. (2013, June–July 30–5). Experimental study of an offshore wind turbine TLP in ULS conditions. Proceedings of the twenty-third (2013) international offshore and polar engineering. Anchorage, AK. International Society of Offshore and Polar Engineers (ISOPE).
  • WindEurope. (2018a). Wind in power 2017. Annual combined onshore and offshore wind energy statistics. Retrieved from https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2017.pdf
  • WindEurope. (2018b). Offshore wind in Europe. Key trends and statistics 2017. Retrieved from https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2017.pdf
  • Zamora-Rodriguez, R., Gomez-Alonso, P., Amate-Lopez, J., De-Diego-Martin, V., Dinoi, P., Simos, A. N., & Souto-Iglesias. (2014, June 8–13). Model scale analysis of a tlp floating offshore wind turbine. In OMAE2014, proceedings of the ASME 2014 33rd international conference on ocean offshore and arctic engineering. San Francisco, CA.
  • Zhang, S., & Ishihara, T. (2016). Hydrodynamic response of a semi-submersible floating offshore wind turbine: Numerical modelling and validation. 15th world wind energy conference. Tokyo.
  • Zountouridou, E. I., Kiokes, G. C., Chakalis, S., Georgilakis, P. S., & Hatziargyriou, N. D. (2015). Offshore floating wind parks in the deepWaters of Mediterranean Sea. Renewable Sustainable Energy Review, 51, 433–448. doi:10.1016/j.rser.2015.06.027