787
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The effect of titanium oxide and hydroxyapatite on the mechanical properties of wollastonite

ORCID Icon, , , & | (Reviewing editor)
Article: 1662163 | Received 11 Apr 2019, Accepted 27 May 2019, Published online: 15 Sep 2019

References

  • Aly, I. H. M., Mohammed, L. A. A., Al-Meer, S., Elsaid, K., & Barakat, N. A. M. (2016). Preparation and characterization of wollastonite/titanium oxide nanofiber bioceramic composite as a future implant material. Ceramics International, 42, 11525–7.
  • Copp, D. H., & Shim, S. S. (1963). The homeostatic function of bone as a mineral reservoir. Oral Surgery, Oral Medicine, and Oral Pathology, 6, 738–744.
  • Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46, 273–282.
  • Garcia, E., Miranzo, P., & Sainz, M. A. (2018). Thermally sprayed wollastonite and wollastonite-diopside compositions as new modulated bioactive coatings for metal implants. Ceramics International, 44, 12896–12904.
  • Lin, K., Zhai, W., Ni, S., Chang, J., Zeng, Y., & Qian, W. (2005). Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceramics International, 31, 323–326.
  • Liu, J., & Miao, X. (2004). Sol- gel derived bioglass as a coating material for porous alumina scaffolds. Ceramics International, 30, 1781–1785.
  • Liu, X., & Ding, C. (2002a). Plasma sprayed wollastonite/TiO2 composites coatings on titanium alloys. Biomaterials, 23, 4065–4077.
  • Liu, X., & Ding, C. (2002b). Morphology of apatite formed on surface of wollastonite coating soaked in simulated body fluid. Materials Letters, 57, 652–655.
  • Liu, X., Ding, C., & Chu, P. K. (2004). Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials, 25, 1755–1761.
  • Magallanes-Perdomo, M., De Aza, A. H., Mateus, A. Y., Teixeira, S., Monteiro, F. J., De Aza, S., & Pena, P. (2010). In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics. Acta Biomaterialia, 6, 2254–2263.
  • Risbud, M., Saheb, D. N., Jog, J., & Bhonde, R. (2001). Preparation, characterization and in vitro biocompatibility evaluation of poly(butylene terephthalate)/wollastonite composites. Biomaterials, 22, 1591–1597.
  • Shukur, M. M., Al-Majeed, E. A., & Obied, M. M. (2014). Characteristic of wollastonite synthesized from local raw materials. International Journal of Engineering & Technology, 4, 426–429.
  • Tamimi, F., Kumarasami, B., Doillon, C., Gbureck, U., Le Nihouannen, D., Cabarcos, E. L., & Barralet, J. E. (2008). Brushite-collagen composites for bone regeneration. Acta Biomaterialia, 4, 1315–1321.
  • Teixeira, S. R., Souza, A. E., Carvalho, C. L., Reynoso, V. C. S., Romero, M., & Ma, J. (2014). Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials. Materials Characterization, 98, 209–214.
  • Toraya, H., Yoshimura, M., & Somiya, S. (1984). Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society. American Ceramic Society, 67, C-119-C–121.
  • Zhang, N. L., Molenda, J. A., Fournelle, J. H., Murphy, W. L., & Sahai, N. (2010). Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells. Biomaterials, 31, 7653–7665.