3,111
Views
14
CrossRef citations to date
0
Altmetric
Research Article

The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia

, , , , & | (Reviewing editor) show all
Article: 1664862 | Received 06 Feb 2019, Accepted 22 Aug 2019, Published online: 15 Sep 2019

References

  • Agudelo Vélez, M. I., Chavarro Bohorquez, D. A., Hernández Tasco, A., Niño Mendieta, A. M., Tovar Narváez, G.E. & Montenegro Trujillo,I. C. (2018). Green book 2030: national science and innovation policy for sustainable development. Bogotá, Colombia: Colciencias.
  • Ahmadifar, M., Sartaj, M., & Abdallah, M. (2015). Investigating the performance of aerobic, semi-aerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J. Mater. Cycles Waste Manag., 18(4):703–714
  • American Public Health Association/American Water Works Association/Water Environment Federation, APHA. (2005). Standard methods for the examination of water and wastewater.21st Edition. Washington, DC, USA.
  • ASTM International, ASTM D5231-92. (2016). Standard test method for determination of the composition of unprocessed municipal solid waste. West Conshohocken, PA,USA: ASTM International.
  • Barlaz, M., Ham, R., & Schaefer, D. (1989, Dec). Mass balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering, 115(6), 1088–14. doi:10.1061/(ASCE)0733-9372(1989)115:6(1088)
  • BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. Bogotá, DC: Banco Interamericano de Desarrollo (BID).
  • Bilgili, M. S., Demir, A., & Varank, G. (2009). Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresource Technology, 100(21), 4976–4980. doi:10.1016/j.biortech.2009.05.012
  • Binner, E., & Zach, A. (1999). Laboratory tests describing the biological reactivity of pretreated residual wastes, In Proceedings of Symposium ORBIT 99 on Organic Recovery and Biological Treatment Symposium, Weimar, Germany.
  • Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., & Mansour, A. A. (2012). Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12), 2258–2265. doi:10.1016/j.wasman.2012.07.024
  • Caicedo, D., Sandoval, J., & Whitting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j.serj.2016.08.001
  • Caicedo-Concha, D. M., Sandoval-Cobo, J. J., & Whiting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j.serj.2016.08.001
  • Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12. doi:10.1016/j.wasman.2016.05.016
  • COLOMBIA, C.D. (2014). Ley 1715 de 2014, Regulación de la integración de las energías renovables no convencioanles al Sistema Energético Nacional. Diario Oficial No. 49.150. Imprenta Nacional: Bogotá D.C.
  • Cossu, R., Lai, T., & Sandon, A. (2012). Standardization of BOD 5/COD ratio as a biological stability index for MSW. Waste Management, 32(8), 1503–1508. doi:10.1016/j.wasman.2012.04.001
  • Cossu, R., & Raga, R. (2008). Test methods for assessing the biological stability of biodegradable waste. Waste Management, 28(2), 381–388. doi:10.1016/j.wasman.2007.01.014
  • DNP. (2016). CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación (DNP).
  • Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K., “IPCC 2008, 2006 IPCC Guidelines for National Greenhouse Gas Inventories,” 2008.
  • EPA, U. S. (2014). Municipal solid waste generation, recycling, and disposal in the United States tables and figures for 2012,” Office of Resource Conservation and Recovery. Retrieved from http://www.epa.gov/epawaste/nonhaz/municipal/pubs/2012_msw_dat_tbls.pdf.
  • Fei, F., Wen, Z., & De Clercq, D. (2019). Spatio-temporal estimation of landfill gas energy potential: A case study in China. Renewable and Sustainable Energy Reviews, 103, 217–226. doi:10.1016/j.rser.2018.12.036
  • Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials, 137, 1008–1015. doi:10.1016/j.jhazmat.2006.03.026
  • Garcia, J., Davies, S., Villa, R., Gomes, D. M., Coulon, F., & Wagland, S. T. (2016). Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction. Waste Management, 55, 336–344. doi:10.1016/j.wasman.2016.06.003
  • HABITAT, U. N. (2010). Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010.
  • Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., ... Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522.
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. World Bank, Washington, DC.
  • IPCC Intergovernmental Panel on Climate Change. 2014. Climate change 2014 impacts, adaptation, and vulnerability part B: Regional aspects.
  • Ivan, C., María, T., Aura, V., Paola, A., & Mario, H. (2016). Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chemical Engineering Transactions, 49, 385–390.
  • Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications
  • Kelly, R. J., Shearer, B. D., Kim, J., Goldsmith, C. D., Hater, G. R., & Novak, J. T. (2006). Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Management, 26(12), 1349–1356. doi:10.1016/j.wasman.2005.11.019
  • Kim, H., & Townsend, T. G. (2012). Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Management, 32(7), 1427–1433. doi:10.1016/j.wasman.2012.03.017
  • Knox, K., Braithwaite, P., Caine, M., & Croft, B. (2005). Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In S. Margherita di Pula (ed.,) Sardinia 2005 – 10th International waste management and landfill symposium. Cagliari, Italy.
  • Larochelle, L., Turner, M., & LaGiglia, M. (2012). Evaluation of NAMA opportunities in Colombia’s solid waste sector. Washington, DC: Center for clean air policy.
  • Lima, R. M., Santos, A. H. M., Pereira, C. R. S., Flauzino, B. K., Pereira, A. C. O. S., Nogueira, F. J. H., Valverde, J. A. R. (2018). Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Management, 74, 323–334. doi:10.1016/j.wasman.2017.12.011
  • Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100(21), 5103–5108. doi:10.1016/j.biortech.2009.03.081
  • Machado, S., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & Do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29(1), 153–161. doi:10.1016/j.wasman.2008.02.017
  • Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & Do Nascimento, J. C. F. (2010, Dec). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. doi:10.1016/j.wasman.2010.07.019
  • Ministerio de Desarrollo Económico de Colombia. (2000). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico- RAS 2000: Titulo F. Ministerio de Desarrollo Económico de Colombia.
  • Pearse, L. F., Hettiaratchi, J. P., & Kumar, S. (2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254, 312–324. doi:10.1016/j.biortech.2018.01.069
  • Pedraza, A., Cabrera, M., Duarte, M., Gutiérrez, M., Lamprea, P., & Lozano, R. (2005). Visión general del inventario nacional de emisiones de gases de efecto de invernadero. In Inventario nacional de emisiones de gases de efecto de invernadero 2002-2004. Segunda comunicación nacional ante la Convención Marco de las Naciones Unidas sobre el cambio climático (pp. 17–66). Bogotá, D. C: IDEAM..
  • Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., de Oliveira, M. A., & Roalcaba, O. D. C. (2016). Landfills for electricity generation from biogas production in Brazil: Comparison of LandGEM (EPA) and Biogas (Cetesb) models | Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (E. Rev. Bras. Estud. Popul., 33(1), 175–188. doi:10.20947/S0102-309820160009
  • Purmessur, B., & Surroop, D. (2019). Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060. doi:10.1016/j.jece.2019.103060
  • Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. doi:10.1016/j.jclepro.2012.06.012
  • Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. doi:10.1016/j.rser.2011.09.008
  • Reinhart, D. R., Faour, A. A., & You, H. (2005). First order kinetics gas generation model parameters for wet landfills. Washington, DC: US. Environmental protection agency.
  • S. de S. P. D. Superservicios, “Informe de Disposición Final de Residuos Sólidos – 2017,” 2018.
  • Scharff, H., van Zomeren, A., & van der Sloot, H. A. (2011). Landfill sustainability and aftercare completion criteria. Waste Manag. Res., 29(1), 30–40. doi:10.1177/0734242X10384310
  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265. doi:10.1016/j.biotechadv.2007.12.005
  • Sponza, D. T., & Aǧdaǧ, O. N. (2004). Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry, 39(12), 2157–2165. doi:10.1016/j.procbio.2003.11.012
  • Swati, M., Karthikeyan, O., Kurian, J., Visvanathan, C., & Nagendran, C. (2011). Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. Journal of Hazardous, Toxic, and Radioactive Waste, 15(October), 321–330. doi:10.1061/(ASCE)HZ.1944-8376.0000081
  • Themelis, N. J., Elena, M., Barriga, D., Estevez, P., & Velasco, M. G., “Guidebook for the application of waste to energy technologies in Latin America and the Caribbean,” 2013.
  • UNEP and ISWA. (2015). The Global Waste Management Outlook (GWMO).
  • United Nations Department of Economic and Social Affairs (UN DESA). (2018). Sustainable Development Goals Report 2018. p. 64,
  • USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project.
  • Velkushanova, W., Caicedo, K., Richards, D., & Powrie, D. J. (2009). A detailed characterisation of an MBT waste. In Sardinia 2009, Twelfth International Waste Management and Landfill Symposium.S. Margherita di Pula, Cagliari, Italy
  • Vergara, S. E., Damgaard, A., & Gomez, D. (2016). The efficiency of informality: quantifying greenhouse gas reductions from informal recycling in Bogotá, Colombia. Journal of Industrial Ecology, 20(1), 107–119. doi:10.1111/jiec.12257
  • Wagland, S. T., Tyrrel, S. F., Godley, A., & Smith, R. (2010). Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Management, 30(5), 934–935. doi:10.1016/j.wasman.2010.01.016
  • Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., … Oelz, B. (2015). ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Management, 35, 329–342. doi:10.1016/j.wasman.2014.10.006
  • Xie, M., Aldenkortt, D., Wagner, J.-F., & Rettenberger, G. (2006). Effect of plastic fragments on hydraulic characteristics of pretreated municipal solid waste. Can. Geotech. J., 43(12), 1333–1343. doi:10.1139/t06-070
  • Yang, N., Damgaard, A., Scheutz, C., Shao, L. M., & He, P. J. (2018). A comparison of chemical MSW compositional data between China and Denmark. Journal of Environmental Sciences, 74, 1–10. doi:10.1016/j.jes.2018.02.010
  • Zhang, Y., Banks, C. J., & Heaven, S. (2012). Anaerobic digestion of two biodegradable municipal waste streams. Journal of Environmental Management, 104, 166–174. doi:10.1016/j.jenvman.2012.03.043
  • Zheng, W., Lü, F., Bolyard, S. C., Shao, L., Reinhart, D. R., & He, P. (2015). Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Management, 36, 222–229. doi:10.1016/j.wasman.2014.10.031
  • Zheng, W., Phoungthong, K., Lü, F., Shao, L.-M., & He, P.-J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 33(12), 2632–2640. doi:10.1016/j.wasman.2013.08.015