1,305
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On the prediction capabilities of two SGS models for large-eddy simulations of turbulent incompressible wall-bounded flows in OpenFOAM

ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1679067 | Received 15 Jul 2019, Accepted 01 Oct 2019, Published online: 23 Oct 2019

References

  • Alletto, M. (2014). Numerical investigation of the influence of particle–particle and particle–wall collisions in turbulent wall–bounded flows at high mass loadings.
  • Bardino, J., Ferziger, J. H., & Reynolds, W. C. (1983). Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows. Technical-Representative.
  • Bernardini, M., Pirozzoli, S., & Orlandi, P. (2014). Velocity statistics in turbulent channel flow up to Reτ = 4000. Journal of Fluid Mechanics, 742, 171–39. doi:10.1017/jfm.2013.674
  • Bogey, C., & Bailly, C. (2006). Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model. International Journal of Heat and Fluid Flow, 27(4), 603–610. doi:10.1016/j.ijheatfluidflow.2006.02.008
  • Bose, S. T., Moin, P., & You, D. (2010). Grid-independent large-eddy simulation using explicit filtering. Physics of Fluids, 22(10), 105103. doi:10.1063/1.3485774
  • Bouffanais, R., Deville, M. O., Fischer, P. F., Leriche, E., & Weill, D. (2006). Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. Journal of Scientific Computing, 27(1), 151–162. doi:10.1007/s10915-005-9039-7
  • Chamorro, L. P., Arndt, R. E. A., & Sotiropoulos, F. (2013). Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies. Renewable Energy, 50, 1095–1105. doi:10.1016/j.renene.2012.09.001
  • Choi, K.-S., & Fujisawa, N. (1993). Possibility of drag reduction using d-type roughness. Applied scientific research (pp. 315–324). Springer.
  • Churchfield, M. J., Sang, L., & Moriarty, P. J. (2013). Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA) Tech. rep. National Renewable Energy Lab. (NREL), Golden, CO.
  • Clark, R. A., Ferziger, J. H., & Reynolds, W. C. (1979). Evaluation of subgrid-scale models using an accurately simulated turbulent flow. Journal of Fluid Mechanics, 91(01), 1–16. doi:10.1017/S002211207900001X
  • Da Silva, C. B., & M´etais, O. (2002). On the influence of coherent structures upon interscale interactions in turbulent plane jets. Journal of Fluid Mechanics, 473, 103–145. doi:10.1017/S0022112002002458
  • De Villiers, E. (2006). The potential of large eddy simulation for the modeling of wall bounded flows. In Imperial college of science. London (UK): Technology and Medicine.
  • De Villiers, E. (2007). The potential of large eddy simulation for the modelling of wall bounded flows (PhD thesis). University of London.
  • Dean, R. B. (1978). Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Journal of Fluids Engineering, 100(2), 215–223. doi:10.1115/1.3448633
  • Del A´lamo, J. C., Jimnez, J., Zandonade, P., & Moser, R. D. (2004). Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135–144. doi:10.1017/S002211200300733X
  • Deshpande, M. D., & George Milton, S. (1998). Kolmogorov scales in a driven cavity flow. Fluid Dynamics Research, 22(6), 359–381. doi:10.1016/S0169-5983(97)00043-9
  • Doolan, C. 2009. “Flow and noise simulation of the NASA tandem cylinder experiment using OpenFOAM”. In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) (pp. 3157).
  • Dritselis, C. D. (2014). Large eddy simulation of turbulent channel flow with transverse roughness elements on one wall. International Journal of Heat and Fluid Flow, 50, 225–239. doi:10.1016/j.ijheatfluidflow.2014.08.008
  • Dritselis, C. D., & Vlachos, N. S. (2011a). Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases. International Journal of Multiphase Flow, 37(7), 706–721. doi:10.1016/j.ijmultiphaseflow.2011.01.012
  • Dritselis, C. D., & Vlachos, N. S. (2011b). Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 23(2), 025103. doi:10.1063/1.3553292
  • Dubois, T., & Bouchon, F. (1998). Subgrid-scale models based on incremental unknowns for large eddy simulation. Center for Turbulence Research Annual Research Briefs, 221–236.
  • El-Samni, O. A., Chun, H. H., & Yoon, H. S. (2007). Drag reduction of turbulent flow over thin rectangular riblets. International Journal of Engineering Science, 45(2–8), 436–454. doi:10.1016/j.ijengsci.2007.03.002
  • Flores, F., Garreaud, R., & Mun˜oz, R. C. (2014). OpenFOAM applied to the CFD simulation of turbulent buoyant atmospheric flows and pollutant dispersion inside large open pit mines under intense insolation. Computers & Fluids, 90, 72–87. doi:10.1016/j.compfluid.2013.11.012
  • Fran, C. K., & Bogey, C. (2015). Large-eddy simulation of turbulent channel flow using relaxation filtering: Resolution requirement and Reynolds number effects. Computers & Fluids, 116, 17–28. doi:10.1016/j.compfluid.2015.03.026
  • Garc´ıa-Mayoral, R., & Jim´enez, J. (2011). Drag reduction by riblets. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1940), 1412–1427. doi:10.1098/rsta.2010.0359
  • Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760–1765. doi:10.1063/1.857955
  • Girimaji, S., & Abdol-Hamid, K. 2005. Partially-averaged Navier Stokes model for turbulence: Implementation and validation. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit (pp. 502).
  • Gloerfelt, X., & Berland, J. (2013). Turbulent boundary-layer noise: Direct radiation at mach number 0.5. Journal of Fluid Mechanics, 723, 318–351. doi:10.1017/jfm.2013.134
  • Higuera, P., Lara, J. L., & Losada, I. J. (2014). Three-dimensional interaction of waves and porous coastal structures using OpenFOAM R. Part I: Formulation and validation. Coastal Engineering, 83, 243–258.
  • Hoyas, S., & Jim´enez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Physics of Fluids, 18(1), 011702. doi:10.1063/1.2162185
  • Hunt, J. C. R., Wray, A. A., & Moin, P. (1988). Eddies, streams, and conver- gence zones in turbulent flows.
  • Inagaki, M., Kondoh, T., & Nagano, Y. (2005). A mixed-time-scale SGS model with fixed model-parameters for practical LES. Journal of Fluids Engineering, 127(1), 1–13. doi:10.1115/1.1852479
  • Islam Mallik, M. S., Uddin, M. A., & Meah, M. A. (2014). Large eddy simulation of turbulent channel flow at Reτ = 590. IOSR–Journal of Math- Ematics, 10(6), 41–50. doi:10.9790/5728
  • Jacobsen, N. G., Fuhrman, D. R., & Fredsøe, J. (2012). A wave generation toolbox for the open-source CFD library: OpenFoam. International Journal for Numerical Methods in Fluids, 70(9), 1073–1088. doi:10.1016/j.coastaleng.2013.08.010
  • Jiménez, J., Wray, A. A., Saffman, P. G., & Rogallo, R. S. (1993). The structure of intense vorticity in isotropic turbulence. Journal of Fluid Mechanics, 255, 65–90. doi:10.1017/S0022112093002393
  • John, V. (2012). Large eddy simulation of turbulent incompressible flows: Analytical and numerical results for a class of LES models (Vol. 34). Springer Science & Business Media.
  • Kajishima, T., & Nomachi, T. (2006). One-equation subgrid scale model using dynamic procedure for the energy production. Journal of Applied Mechanics, 73(3), 368–373. doi:10.1115/1.2164509
  • Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully de- veloped channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166. doi:10.1017/S0022112087000892
  • Kleissl, J., Kumar, V., Meneveau, C., & Parlange, M. B. (2006). Numerical study of dynamic Smagorinsky models in large- eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions. Water Resources Research, 42(6). doi:10.1029/2005WR004685
  • Kobayashi, H. (2005). The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Physics of Fluids, 17(4), 045104. doi:10.1063/1.1874212
  • Kobayashi, H. (2006). Large eddy simulation of magnetohydrodynamic turbu- lent channel flows with local subgrid-scale model based on coherent structures. Physics of Fluids, 18(4), 045107. doi:10.1063/1.2194967
  • Kobayashi, H., Ham, F., & Wu, X. (2008). Application of a local SGS model based on coherent structures to complex geometries. International Journal of Heat and Fluid Flow, 29(3), 640–653. doi:10.1016/j.ijheatfluidflow.2008.02.008
  • Kravchenko, A. G., & Moin, P. (2000). Numerical studies of flow over a circular cylinder at Re D= 3900. Physics of Fluids, 12(2), 403–417. doi:10.1063/1.870318
  • Lee, M., & Moser, R. D. (2014). Direct numerical simulation of turbulent channel flow up to Reτ approx 5200. Journal of Fluid Mechanics, 774, 395–415
  • Lee, M., & Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to Reτ approx 5200. Journal of Fluid Mechanics, 774, 395–415. doi:10.1017/jfm.2015.268
  • Leonardi, S., Orlandi, P., & Antonia, R. A. (2005). A method for determining the frictional velocity in a turbulent channel flow with roughness on the bottom wall. Experiments in Fluids, 38(6), 796–800. doi:10.1007/s00348-005-0975-7
  • Leonardi, S., Orlandi, P., Djenidi, L., & Antonia, R. A. (2004). Structure of turbulent channel flow with square bars on one wall. International Journal of Heat and Fluid Flow, 25(3), 384–392. doi:10.1016/j.ijheatfluidflow.2004.02.022
  • Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L., & Antonia, R. A. (2003). Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. Journal of Fluid Mechanics, 491, 229–238. doi:10.1017/S0022112003005500
  • Leonardi, S., Orlandi, P., & Antonia, R. A. (2007). Properties of d-and k-type roughness in a turbulent channel flow. Physics of Fluids, 19(12), 125101. doi:10.1063/1.2821908
  • Leriche, E. (2006). Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method. Journal of Scientific Computing, 27(1), 335–345. doi:10.1007/s10915-005-9032-1
  • Lesieur, M., & Metais, O. (1996). New trends in large-eddy simulations of turbulence. Annual Review of Fluid Mechanics, 28(1), 45–82. doi:10.1146/annurev.fl.28.010196.000401
  • Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A: Fluid Dynamics, 4(3), 633–635. doi:10.1063/1.858280
  • Luo, D. D., Leung, C. W., Chan, T. L., & Wong, W. O. (2005). Flow and forced-convection characteristics of turbulent flow through parallel plates with periodic transverse ribs. Numerical Heat Transfer, Part A: Applications, 48(1), 43–58. doi:10.1080/10407780590929829
  • Lysenko, D. A., Ertesv°ag, I. S., & Rian, K. E. (2013). Modeling of turbulent separated flows using OpenFOAM. Computers & Fluids, 80, 408–422. doi:10.1016/j.compfluid.2012.01.015
  • Lysenko, D. A., Ertesv°ag, I. S., & Rian, K. E. (2012). Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the Open- FOAM toolbox. Flow, Turbulence and Combustion, 89(4), 491–518. doi:10.1007/s10494-012-9405-0
  • Mallouppas, G., & van Wachem, B. (2013). Large eddy simulations of turbulent particle-laden channel flow. International Journal of Multiphase Flow, 54, 65–75. doi:10.1016/j.ijmultiphaseflow.2013.02.007
  • Marchioli, C. (2017). Large-eddy simulation of turbulent dispersed flows: A review of modelling approaches. Acta Mechanica, 228(3), 741–771. doi:10.1007/s00707-017-1803-x
  • Meyers, J., & Sagaut, P. (2007). Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models? Physics of Fluids, 19(4), 048105. doi:10.1063/1.2722422
  • Moeng, C. H., & Sullivan, P. P. (2015). Large-eddy simulation. Encyclopedia of Atmospheric Sciences, 2, 232–240.
  • Moin, P., & Kim, J. (1982). Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118, 341–377. doi:10.1017/S0022112082001116
  • Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to Re τ = 590. Physics of Fluids, 11(4), 943–945. doi:10.1063/1.869966
  • Muntean, S., Nilsson, H., & Susan-Resiga, R. F. (2009 October). “3D numerical analysis of the unsteady turbulent swirling flow in a conical diffuser using fluent and OpenFOAM”. In: Proceedings of the 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems (pp. 14–16), Brno, Czech Republic.
  • Nadeem, M., Lee, J. H., Lee, J., & Sung, H. J. (2015). Turbulent boundary layers over sparsely-spaced rod- roughened walls. International Journal of Heat and Fluid Flow, 56, 16–27. doi:10.1016/j.ijheatfluidflow.2015.06.006
  • Nagano, Y., Hattori, H., & Houra, T. (2004). DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. International Journal of Heat and Fluid Flow, 25(3), 393–403. doi:10.1016/j.ijheatfluidflow.2004.02.011
  • Nilsson, H. (2007, November 26–27). “Experiences with OpenFOAM for water turbine applications”. In: Proceedings of the 1st OpenFOAM International Conference, Beaumont House, Old Windsor, United Kingdom.
  • Orlandi, P., Leonardi, S., & Antonia, R. A. (2006). Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. Journal of Fluid Mechanics, 561, 279–305. doi:10.1017/S0022112006000723
  • Panjwani, B., Popescu, M., Samseth, J., Meese, E., & Mahmoudi, J. (2014). OffWindSolver: Wind farm design tool based on actuator line/actuator disk concept in OpenFoam architecture. In ITM Web of Conferences (Vol. 2, p. 04001). EDP Sciences.
  • Pantano, C., Pullin, D. I., Dimotakis, P. E., & Matheou, G. (2008). LES approach for high Reynolds number wall-bounded flows with application to turbulent channel flow. Journal of Computational Physics, 227(21), 9271–9291. doi:10.1016/j.jcp.2008.04.015
  • Peltola, J., Pättikangas, T., Brockmann, T., Siikonen, T., Toppila, T., & Brandt, T. (2011, May). Adaptation and validation of OpenFOAM® CFD-solvers for nuclear safety related flow simulations. In SAFIR2010 Seminar (Vol. 17, No. 2011, pp. 1-20).
  • Piomelli, U. (2014). Large eddy simulations in 2030 and beyond. Philosophical Transactions of the Royal Society A, 372(2022), 20130320. doi:10.1098/rsta.2013.0320
  • Robertson, E., Choudhury, V., Bhushan, S., & Walters, D. K. (2015). Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Computers & Fluids, 123, 122–145. doi:10.1016/j.compfluid.2015.09.010
  • Sagaut, P. (2006). Large eddy simulation for incompressible flows: An introduction. Springer Science & Business Media.
  • Saha, A. K., & Acharya, S. (2004). Unsteady simulation of turbulent flow and heat transfer in a channel with periodic array of cubic pin-fins. Numerical Heat Transfer, Part A: Applications, 46(8), 731–763. doi:10.1080/104077890504465
  • Saidi, B. S. A. (2000). Numerical simulation of turbulent convective heat transfer in square ribbed ducts. Numerical Heat Transfer: Part A: Applications, 38(1), 67–88. doi:10.1080/10407780050134974
  • Schiavo, L. A. C. A., Wolf, W. R., & Azevedo, J. L. F. (2017). Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation. Physics of Fluids, 29(11), 115108. doi:10.1063/1.4992793
  • Schlatter, P., Li, Q., Brethouwer, G., Johansson, A. V., & Henningson, D. S. (2010). Simulations of spatially evolving turbulent boundary layers up to Reθ = 4300. International Journal of Heat and Fluid Flow, 31(3), 251–261. doi:10.1016/j.ijheatfluidflow.2009.12.011
  • Shankar, P. N., & Deshpande, M. D. (2000). Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics, 32(1), 93–136. doi:10.1146/annurev.fluid.32.1.93
  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Taylor, G. I., Maccoll, J. W., & Durand, W. F. (1935). Aerodynamic Theory. Julius Springer, Berlin, 3, 209.
  • Veloudis, I., Yang, Z., & McGuirk, J. J. (2008). LES of wall-bounded flows using a new subgrid scale model based on energy spectrum dissipation. Journal of Applied Mechanics, 75(2), 021005. doi:10.1115/1.2775499
  • Viazzo, S., Dejoan, A., & Schiestel, R. (2001). Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturba- tions using LES. International Journal of Heat and Fluid Flow, 22(1), 39–52. doi:10.1016/S0142-727X(00)00074-6
  • Vincent, A., & Meneguzzi, M. (1991). The spatial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics, 225, 1–20. doi:10.1017/S0022112091001957
  • Vreman, A. W. (2004). An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670–3681. doi:10.1063/1.1785131
  • Yoshizawa, A., Kobayashi, K., Kobayashi, T., & Taniguchi, N. (2000). A nonequilibrium fixed-parameter subgrid-scale model obeying the near-wall asymptotic constraint. Physics of Fluids, 12(9), 2338–2344. doi:10.1063/1.1287518
  • Zhiwei, H., Morfey, C. L., & Sandham, N. D. (2006). Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA Journal, 44(7), 1541–1549. doi:10.2514/1.17638
  • Zhiyin, Y. (2015). Large-eddy simulation: Past, present and the future. Chinese Journal of Aeronautics, 28(1), 11–24. doi:10.1016/j.cja.2014.12.007