841
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A decision-support methodology for the energy design of sustainable buildings in the early stages

, , ORCID Icon & | (Reviewing editor)
Article: 1684173 | Received 28 May 2019, Accepted 17 Oct 2019, Published online: 02 Nov 2019

References

  • Agency, International Energy. 2003. Task 23: Optimization of solar energy use in large buildings, integrated design process: A guideline for sustainable and solar-optimised building design.
  • American Society of Heating, Refrigerating and Air-conditioning Engineers. (2004). ANSI/ASHRAE standard 55–2004: Thermal environmental conditions for human occupancy.
  • Attia, S., Gratia, E., De Herde, A., & Hensen, J. L. (2012). Simulation-based decision support tool for early stages of zero-energy building design. Energy and Buildings, 49(June), 2–22. doi:10.1016/J.ENBUILD.2012.01.028
  • Baek, C., Park, S.-H., Suzuki, M., & Lee, S.-H. (2013). Life cycle carbon dioxide assessment tool for buildings in the schematic design phase. Energy and Buildings, 61(June), 275–287. doi:10.1016/J.ENBUILD.2013.01.025
  • Caccavelli, D, Roux, J. J, & Brau, J. (1987). Modélisation simplifiée du comportement thermique d’un bâtiment multizone : Prise en compte des phénomènes de ventilation. Revue Générale De Thermique, 31, 585–596.
  • Centre Scientifique et Technique du Bâtiment. (2006). Règles Th-CE – Calcul de La Consommation d’énergie et de La Température Atteinte En Été. Réglementation Thermique 2005.
  • Collectif Effinergie. (2014). Observatoire BBC : L’observatoire des bâtiments basse consommation. Retrieved from http://observatoirebbc.org/
  • D’Amico, B., & Pomponi, F. (2018). Accuracy and reliability: A computational tool to minimise steel mass and carbon emissions at early-stage structural design. Energy and Buildings, 168, 236–250. doi:10.1016/j.enbuild.2018.03.031
  • Eichhammer, W., Fleiter, T., Schlomann, B., Faberi, S., Fioretto, M., Piccioni, N., … Resch, G. 2009, March. Study on the energy savings potentials in EU member states, candidate countries and EEA countries final report for the european commission directorate-general energy and transport. Technology, 337. https://ec.europa.eu/energy/sites/ener/files/documents/2009_03_15_esd_efficiency_potentials_final_report.pdf.
  • European Commission. 2013. Report from the commission to the European parliament and the council –progress by member states towards nearly zero-energy buildings, Brussels. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52013DC0483R(01)&from=EN.
  • European Committee for Standardization. (2007). NF EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.
  • European Committee for Standardization. (2010). EN 15643–1: Sustainability of construction works - sustainability assessment of buildings - Part 1: General framework.
  • European Committee for Standardization. (2011). EN 15643–2: Sustainability of construction works - assessment of buildings - Part 2: Framework for the assessment of environmental performance.
  • European Committee for Standardization. (2012a). EN 15643–3: Sustainability of construction works - assessment of buildings - Part 3: Framework for the assessment of social performance.
  • European Committee for Standardization. (2012b). EN 15643–4: Sustainability of construction works - assessment of buildings - Part 4: Framework for the assessment of economic performance.
  • Gan, V. J. L., Deng, M., Tse, K. T., Chan, C. M., Lo, I. M. C., & Cheng, J. C. P. (2018). Holistic BIM framework for sustainable low carbon design of high-rise buildings. Journal of Cleaner Production, 195, 1091–1104. doi:10.1016/j.jclepro.2018.05.272
  • Gervásio, H., Santos, P., Martins, R., & Simões da Silva, L. (2014). A macro-component approach for the assessment of building sustainability in early stages of design. Building and Environment, 73(March), 256–270. doi:10.1016/J.BUILDENV.2013.12.015
  • Hakkinnen, T. (2012). Sustainability and performance assessment and benchmarking of a building – final report.
  • Hamdy, M., Hasan, A., & Siren, K. (2013). A multi-stage optimization method for cost-optimal and nearly-zero-energy building solutions in line with the EPBD-recast 2010. Energy and Buildings, 56(January), 189–203. doi:10.1016/J.ENBUILD.2012.08.023
  • HOUSE, OPEN. (2012). Qualitel « habitat & environnement » : Certifications Habitat Neuf - Référentiel Millésime 2012.
  • International Organization for Standardization. (2008). ISO 15686–5: Buildings and constructed assets - service-life planning - Part 5: Life-cycle costing.
  • Journal officiel de la République française (JORF). (1994). Décret n°93-1268 du 29 novembre 1993 relatif aux missions de maîtrise d’œuvre confiées par des maîtres d’ouvrage publics à des prestataires de droit privé. NOR : EQUU9301161D. JORF du 1er décembre 1993.
  • LEBERT, A., Lasvaux, S., GRANNEC, F., NIBEL, S., ACHIM, F., & SCHIOPU., N. (2013). Capitalisation Des Résultats de l ’ Expérimentation HQE performance. Analyse Statistique Action, 22, 1–235.
  • Liébard, A., & De Herde, A. (2005). Traité d’Architecture et d’Urbanisme Bioclimatiques : Concevoir, Édifier et Aménager Avec Le Développement Durable. Observ’ER. Observatoire des énergies renouvelables.
  • Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018a). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228–236. doi:10.1016/j.buildenv.2018.02.016
  • Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018b). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133(January), 228–236. doi:10.1016/j.buildenv.2018.02.016
  • Moghtadernejad, S., Chouinard, L. E., & Saeed Mirza, M. (2018). Multi-criteria decision-making methods for preliminary design of sustainable facades. Journal of Building Engineering, 19(May), 181–190. doi:10.1016/j.jobe.2018.05.006
  • Nault, E., Waibel, C., Carmeliet, J., & Andersen, M. (2018, March). Development and test application of the UrbanSOLve decision-support prototype for early-stage neighborhood design. Building and Environment, 137, 58–72. doi:10.1016/j.buildenv.2018.03.033
  • Ochoa, C. E., & Capeluto, I. G. (2009). Advice tool for early design stages of intelligent facades based on energy and visual comfort approach. Energy and Buildings, 41(5), 480–488. doi:10.1016/J.ENBUILD.2008.11.015
  • OPEN HOUSE. 2013. Benchmarking and mainstreaming building sustainability in the EU based on transparency and openness (open source and availability) from model to implementation. Retrieved from https://cordis.europa.eu/project/rcn/93875/factsheet/en.
  • Poirazis, H. (2004). Double skin façades for office buildings. Holland: Lund Institute of Technology.
  • Roux, J. J. (1984). Proposition de Modèles Simplifiés Pour l’étude Du Comportement Thermique Des Bâtiments. Institut National des Sciences Appliquées de Lyon (Thesis).
  • Université catholique de Louvain. 2014. Energie+, Architecture et Climat. Retrieved from http://www.energieplus-lesite.be.
  • Velázquez, E. (2015). Processus de Conception Énergétique de Bâtiments Durables. Arts et Métiers ParisTech (Thesis). https://pastel.archives-ouvertes.fr/tel-01314137/document
  • Wang, W., Zmeureanu, R., & Rivard, H. (2005). Applying multi-objective genetic algorithms in green building design optimization. Building and Environment, 40(11), 1512–1525. doi:10.1016/J.BUILDENV.2004.11.017