710
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Control of carbon nanotube cantilever vibrator for nano-antenna applications

& ORCID Icon | (Reviewing editor)
Article: 1710428 | Received 27 Sep 2019, Accepted 22 Dec 2019, Published online: 03 Jan 2020

References

  • Abdul-adheem, W. R., Shalash, N. A., & Ghaffoori, A. J. (2017). Optimal full state feedback controller for two DC motor configurations with buck chopper. Eurasian Journal of Analytical Chemistry, 13(3), 278–12.
  • Aouaouda, S., & Chadli, M. (2019). Robust fault tolerant controller design for Takagi- Sugeno systems under input saturation. International Journal of Systems Science, 50(6), 1163–1178. doi:10.1080/00207721.2019.1597941
  • Bandaru, P. R. (2007). Electrical properties and applications of carbon nanotube structures. Journal of Nanoscience and Nanotechnology, 7, 1239–1267. doi:10.1166/jnn.2007.307
  • Bilici, M. A., Haase, J. R., Boyle, C. R., Go, D. B., & Sankaran, R. M. (2016). electrode gaps at atmospheric pressure The smooth transition from field emission to a self-sustained plasma in microscale electrode gaps at atmospheric pressure. Journal of Applied Physics, 119(22), 1–9. doi:10.1063/1.4953648
  • Bonard, J. M., Stöckli, T., Noury, O., & Châtelain, A. (2001). Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes. Applied Physics Letters, 78(18), 2775–2777. doi:10.1063/1.1367903
  • Chadli, M., Maquin, D., & Ragot, J. (2002). Static output feedback for Takagi-Sugeno systems: An LMI approach. 10th mediterranean conference on control and automation MED2002 (pp. 1–7). Lisboa, Portugal: MED'2002At.
  • Chen, G., Zhang, L., Ma, H., Yao, N., & Zhang, B. (2012). Carbon nanotubes cathode of field emission lamp prepared by electrophoretic deposition. Energy Procedia, 16, 240–243. doi:10.1016/j.egypro.2012.01.040
  • Cole, M. T., Teo, K. B. K., Groening, O., Gangloff, L., Legagneux, P., & Milne, W. I. (2014). Deterministic cold cathode electron emission from carbon nanofibre arrays. Scientific Reports, 4, 6–10.
  • Du, J., Zhang, L., Li, J., & Jia, J. (2019). Multi-PI control of hammerstein-wiener systems. Chinese Control Conference, CCC (pp. 279–282). Guangzhou, China.
  • Farhana, S., Alam, Z., Motakabber, S., & Khan, S. (2013). Design and development of a simulator for modelling carbon nanotube. 5th International Conference on Mechatronics (ICOM’13) (pp. 1–6). Kuala Lumpur, Malaysia.
  • Feichtner, T., Selig, O., & Hecht, B. (2015). Plasmonic nanoantenna design and fabrication based on evolutionary optimization. Optics Express, 25(10), 10828–10842. doi:10.1364/OE.25.010828
  • Gan, H., Zhang, T., Guo, Z., Lin, H., Li, Z., Chen, H., … Liu, F. (2019). The growth methods and field emission studies of low-dimensional boron-based nanostructures. Applied Sciences, 9(5), 1–17. doi:10.3390/app9051019
  • Ghaffoori, A. J. (2019). Papr reduction in ofdm system using adaptive hybrid technique. IOP Conference Series: Materials Science and Engineering, 518(5). doi:10.1088/1757-899X/518/5/052021
  • Ghaffoori, A. J., & Abdul-Adheem, W. R. (2019). Control of field electron emission for carbon nanotube via externally applied DC electric field. IEEE international conference on sensors and nanotechnology 2019 (pp. 8–11). doi:10.1186/s12912-019-0335-1
  • Giannopoulos, G. I., Kakavas, P. A., & Anifantis, N. K. (2008). Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Computational Materials Science, 41(4), 561–569. doi:10.1016/j.commatsci.2007.05.016
  • Gupta, S. S., & Batra, R. C. (2008). Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Computational Materials Science, 43(4), 715–723. doi:10.1016/j.commatsci.2008.01.032
  • Hsu, Y. L., & Wang, J. S. (2009). A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. Journal of Process Control, 19(6), 942–953. doi:10.1016/j.jprocont.2008.12.002
  • Hu, Y.-G., Liew, K. M., & Wang, Q. (2012). Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 11(12), 10401–10407. doi:10.1166/jnn.2011.5729
  • Khademolhosseini, F., Phani, A. S., Nojeh, A., & Rajapakse, N. (2012). Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes. IEEE Transactions on Nanotechnology, 11(1), 34–43. doi:10.1109/TNANO.2011.2111380
  • Khuyen, B. X., Tung, B. S., Yoo, Y. J., Kim, Y. J., Kim, K. W., Chen, L.-Y., … Lee, Y. (2017). Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Scientific Reports, 7(March), 1–7. doi:10.1038/srep45151
  • Krüger, M., Lemell, C., Wachter, G., Burgdörfer, J., & Hommelhoff, P. (2018). Attosecond physics phenomena at nanometric tips. Journal of Physics B: Atomic, Molecular and Optical Physics, 51(17), 172001. doi:10.1088/1361-6455/aac6ac
  • Kulkarni, R. S., Talange, D. B., & Mate, N. V. (2019). Output estimation of solar Photovoltaic (PV) system. International Symposium on Advanced Electrical and Communication Technologies ISAECT 2018 – Proceedings (pp.1–6). Kenitra, Morocco.
  • Kyritsakis, A., & Xanthakis, J. P. (2015). Derivation of a generalized fowler-nordheim equation for nanoscopic field-emitters. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174), 1–10. doi:10.1098/rspa.2014.0811
  • Lee, N. S., Chung, D. S., Han, I. T., Kang, J. H., Choi, Y. S., Kim, H. Y., … Kim, J. M. (2001). Application of carbon nanotubes to field emission displays. Diamond and Related Materials, 10(2), 265–270. doi:10.1016/S0925-9635(00)00478-7
  • Lei, W., Zhu, Z., Liu, C., Zhang, X., Wang, B., & Nathan, A. (2015). High-current field-emission of carbon nanotubes and its application as a fast-imaging X-ray source. Carbon New York, 94, 687–693. doi:10.1016/j.carbon.2015.07.044
  • Lim, S. C., Lee, K., Lee, I. H., & Lee, Y. H. (2007). Field emission and application of carbon nanotubes. Nano, 02(02), 69–89. doi:10.1142/S1793292007000465
  • Lokman, A. H., Soh, P. J., Azemi, S. N., Lago, H., Podilchak, S. K., Chalermwisutkul, S., … Gao, S. (2017). A review of antennas for picosatellite applications. International Journal of Antennas and Propagation, 2017, 1–17. doi:10.1155/2017/4940656
  • Matejčik, Š., Klas, M., Radjenović, B., Durian, M., Savić, M., & Radmilović-Radjenović, M. (2013). The role of the field emission effect in the breakdown mechanism of direct-current helium discharges in micrometer gaps. Contributions to Plasma Physics, 53(8), 573–579. doi:10.1002/ctpp.201300032
  • Mauricio, J., & Srivastav, A. (2008). Numerical modeling of the I-V characteristics of carbon nanotube field effect transistors. 40th Southeastern Symposium on System Theory (SSST). New Orleans, LA.
  • Meenakshipriya, B., & Manikandan, S. (2015). Wiener model-based CDM-PI controller for pH neutralisation process. International Journal of Modelling, Identification and Control, 24(2), 127–137. doi:10.1504/IJMIC.2015.071889
  • Mohammed, C., &Pierre, B. (2012). Multiple models approach in automation: Takagi- Sugeno fuzzy systems. John Wiley & Sons.
  • Narendar, S., & Gopalakrishnan, S. (2012). A nonlocal continuum mechanics model to estimate the material property of single-walled carbon nanotubes. International Journal of Nanoscience, 11(1), 1–8. doi:10.1142/S0219581X1250007X
  • Nikolayev, D., Zhadobov, M., Karban, P., & Sauleau, R. (2018). Electromagnetic radiation efficiency of body-implanted devices. Physical Review Applied, 9(2), 24033. doi:10.1103/PhysRevApplied.9.024033
  • Pal, G., & Kumar, S. (2016). Modeling of carbon nanotubes and carbon nanotube-polymer composites. Progress in Aerospace Sciences, 80, 33–58. doi:10.1016/j.paerosci.2015.12.001
  • Papanikos, P., Nikolopoulos, D. D., & Tserpes, K. I. (2008). Equivalent beams for carbon nanotubes. Computational Materials Science, 43(2), 345–352. doi:10.1016/j.commatsci.2007.12.010
  • Park, S., Gupta, A., Yeo, S., Jung, J., Paik, S., Mativenga, M., … Ryu, J. (2018). Carbon nanotube field emitters synthesized on metal alloy substrate by PECVD for customized compact field emission devices to be used in X-Ray source applications. Nanomaterials, 8(6), 1–9. doi:10.3390/nano8060378
  • Parmee, R. J., Collins, C. M., Milne, W. I., & Cole, M. T. (2015). X-ray generation using carbon nanotubes. Nano Convergence, 2(1), 1–27. doi:10.1186/s40580-014-0034-2
  • Paulson, J. A., Molaro, M. C., Bellisario, D. O., Strano, M. S., & Braatz, R. D. (2016). Mathematical modeling and analysis of carbon nanotube photovoltaic systems. IFAC-PapersOnLine, 49(7), 442–447. doi:10.1016/j.ifacol.2016.07.382
  • Rehan, M., Tufail, M., Ahn, C. K., & Chadli, M. (2017). Stabilisation of locally Lipschitz non-linear systems under input saturation and quantisation. IET Control Theory & Applications, 11(9), 1459–1466. doi:10.1049/iet-cta.2016.1424
  • Saito, Y., & Uemura, S. (2000). Field emission from carbon nanotubes and its application to electron sources. Carbon New York, 38(2), 169–182. doi:10.1016/S0008-6223(99)00139-6
  • Song, I. H., Oh, R. J., Park, M. J., Rhee, H. K., & Yoo, K. Y. (2006). Control of a continuous polymerization reactor by Wiener input/output data-based predictive controller with direct with direct inverse identification. Chemical Engineering Communications, 193(7), 782–800. doi:10.1080/00986440500267196
  • Tanaka, H., Ohno, Y., & Tadokoro, Y. (2015). Angular Sensitivity of VHF-Band CNT Antenna. IEEE Transactions on Nanotechnology, 14(6), 1112–1116. doi:10.1109/TNANO.2015.2477813
  • Tanaka, H., Ohno, Y., & Tadokoro, Y. (2017). Adaptive control of angular sensitivity for VHF-Band nano-antenna using CNT mechanical resonator. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 3(1), 24–32. doi:10.1109/TMBMC.2016.2640282
  • Tang, Y., Han, Z., Liu, F., & Guan, X. (2016, Sep). Identification and control of nonlinear system based on Laguerre-ELM Wiener model. Communications in Nonlinear Science and Numerical Simulation, 38, 192–205. doi:10.1016/j.cnsns.2016.02.016
  • Verma, M., Singh, B., Chabbra, V., & Devi, R. (2018). Vibration and displacement analysis of carbon nanotube based cantilever for NEMS applications. Proceedings of the 2nd international conference on communication and electronics systems, ICCES 2017 (pp. 391–394). Coimbatore, India.
  • Vincent, P., Poncharal, P., Barois, T., Perisanu, S., Gouttenoire, V., Frachon, H., & Purcell, S. T. (2011). Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators. Physical Review B, 83(15), 1–9. doi:10.1103/PhysRevB.83.155446
  • Zubair, M., Ang, Y. S., & Ang, L. K. (2018). Fractional fowler-nordheim law for field emission from rough surface with nonparabolic energy dispersion. IEEE Transactions on Electron Devices, 65(6), 2089–2095. doi:10.1109/TED.2017.2786020