927
Views
10
CrossRef citations to date
0
Altmetric
SYSTEMS & CONTROL

IMO-based novel adaptive dual-mode controller design for AGC investigation in different types of systems

, ORCID Icon & | (Reviewing editor)
Article: 1711675 | Received 24 Jul 2019, Accepted 21 Dec 2019, Published online: 13 Jan 2020

References

  • Arya, Y. (2017). AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries. Energy, 127, 704–21. doi:10.1016/j.energy.2017.03.129
  • Arya, Y. (2018). AGC of two-area electric power systems using optimized fuzzy PID with filter plus double integral controller. Journal of the Franklin Institute, 355(11), 4583–4617. doi:10.1016/j.jfranklin.2018.05.001
  • Arya, Y. (2019). AGC of restructured multi-area multi-source hydrothermal power systems incorporating energy storage units via optimal fractional-order fuzzy PID controller. Neural Computing and Applications, 31(3), 851–872. doi:10.1007/s00521-017-3114-5
  • Barisal, A. K. (2015). Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems. International Journal of Electrical Power & Energy Systems, 66, 67–77. doi:10.1016/j.ijepes.2014.10.019
  • Çam, E., & Kocaarslan, I. (2005). Load frequency control in two area power systems using fuzzy logic controller. Energy Conversion and Management, 46(2), 233–243. doi:10.1016/j.enconman.2004.02.022
  • Concordia, C., & Kirchmayer, L. K. (1953). Tie-line power and frequency control of electric power systems [includes discussion]. Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, 72(2), 562–572. doi:10.1109/AIEEPAS.1953.4498667
  • Debbarma, S., Saikia, L. C., & Sinha, N. (2013). AGC of a multi-area thermal system under deregulated environment using a non-integer controller. Electric Power Systems Research, 95, 175–183. doi:10.1016/j.epsr.2012.09.008
  • Debbarma, S., Saikia, L. C., & Sinha, N. (2014). Solution to automatic generation control problem using firefly algorithm optimized I λ D µ controller. ISA Transactions, 53(2), 358–366. doi:10.1016/j.isatra.2013.09.019
  • Debnath, M. K., Jena, T., & Ranjan, K. M. (2017). Optimal design of PD-Fuzzy-PID cascaded controller for automatic generation control. Cogent Engineering, 4(1), 1416535. doi:10.1080/23311916.2017.1416535
  • Debnath, M. K., Jena, T., & Sanyal, S. K. (2019). Frequency control analysis with PID-fuzzy-PID hybrid controller tuned by modified GWO technique. International Transactions on Electrical Energy Systems, 29(10): e12074.
  • Debnath, M. K., Mallick, R. K., & Sahu, B. K. (2017). Application of hybrid differential evolution–grey wolf optimization algorithm for automatic generation control of a multi-source interconnected power system using optimal fuzzy–PID controller. Electric Power Components and Systems, 45(19), 2104–2117. doi:10.1080/15325008.2017.1402221
  • Dey, R., Ghosh, S., Ray, G., & Rakshit, A. (2012). H∞load frequency control of interconnected power systems with communication delays. International Journal of Electrical Power & Energy Systems, 42(1), 672–684. doi:10.1016/j.ijepes.2012.03.035
  • Farahani, M., Ganjefar, S., & Alizadeh, M. (2012). PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory & Applications, 6(13), 1984–1992. doi:10.1049/iet-cta.2011.0405
  • Ghoshal, S. P. (2004). Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control. Electric Power Systems Research, 72(3), 203–212. doi:10.1016/j.epsr.2004.04.004
  • Ghoshal, S. P., & Goswami, S. K. (2003). Application of GA based optimal integral gains in fuzzy based active power-frequency control of non-reheat and reheat thermal generating systems. Electric Power Systems Research, 67(2), 79–88. doi:10.1016/S0378-7796(03)00087-7
  • Gozde, H., & CengizTaplamacioglu, M. (2011). Automatic generation control application with craziness based particle swarm optimization in a thermal power system. International Journal of Electrical Power & Energy Systems, 33(1), 8–16. doi:10.1016/j.ijepes.2010.08.010
  • Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Santhi, V., Ashour, A. S., & Balas, V. E. (2017). Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity. Neural Computing and Applications, 28(1), 475–488. doi:10.1007/s00521-016-2361-1
  • Javidy, B., Hatamlou, A., & Mirjalili, S. (2015). Ions motion algorithm for solving optimization problems. Applied Soft Computing, 32, 72–79. doi:10.1016/j.asoc.2015.03.035
  • Khuntia, S. R., & Panda, S. (2010). Comparative study of different controllers for automatic generation control of an interconnected hydro-thermal system with generation rate constraints. Industrial Electronics, Control & Robotics (IECR), 2010 International Conference on Orissa, India. IEEE.
  • Khuntia, S. R., & Panda, S. (2012). Simulation study for automatic generation control of a multi-area power system by ANFIS approach. Applied Soft Computing, 12(1), 333–341. doi:10.1016/j.asoc.2011.08.039
  • Kundur, P. (1994). Power system stability and control. Vol. 7. N. J. Balu & M. G. Lauby. Eds. New York: McGraw-hill.
  • Liu, X., Zhang, Y., & Lee, K. Y. (2017). Coordinated distributed MPC for load frequency control of power system with wind farms. IEEE Transactions on Industrial Electronics, 64(6), 5140–5150. doi:10.1109/TIE.2016.2642882
  • Mohanty, B., Panda, S., & Hota, P. K. (2014). Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. International Journal of Electrical Power & Energy Systems, 54, 77–85. doi:10.1016/j.ijepes.2013.06.029
  • Mu, C., Tang, Y., & Haibo, H. (2017). Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy. IEEE Transactions on Industrial Electronics, 64(8), 6742–6751. doi:10.1109/TIE.2017.2694396
  • Mudi, K. R., & Pal, R. N. (1999). A robust self-tuning scheme for PI-and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems, 7(1), 2–16. doi:10.1109/91.746295
  • Nanda, J., Mishra, S., & Saikia, L. C. (2009). Maiden application of bacterial foraging-based optimization technique in multiarea automatic generation control. Power Systems, IEEE Transactions, 24(2), 602–609. doi:10.1109/TPWRS.2009.2016588
  • Ojaghi, P., & Rahmani, M. (2017). LMI-based robust predictive load frequency control for power systems with communication delays. IEEE Transactions on Power Systems, 32(5), 4091–4100. doi:10.1109/TPWRS.2017.2654453
  • Omar, M., Soliman, M., Ghany, A. A., & Bendary, F. (2013). Optimal tuning of PID controllers for hydrothermal load frequency control using ant colony optimization. International Journal on Electrical Engineering and Informatics, 5(3), 348–360. doi:10.15676/ijeei.2013.5.3.8
  • Pappachen, A., & Peer Fathima, A. (2017). Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review. Renewable and Sustainable Energy Reviews, 72, 163–177. doi:10.1016/j.rser.2017.01.053
  • Rout, U. K., Sahu, R. K., & Panda, S. (2013). Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system. Ain Shams Engineering Journal, 4(3), 409–421. doi:10.1016/j.asej.2012.10.010
  • Saikia, L. C., Mishra, S., Sinha, N., & Nanda, J. (2011). Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller. International Journal of Electrical Power & Energy Systems, 33(4), 1101–1108. doi:10.1016/j.ijepes.2011.01.029
  • Singh, V. P., Kishor, N., & Samuel, P. (2017). Distributed multi-agent system-based load frequency control for multi-area power system in smart grid. IEEE Transactions on Industrial Electronics, 64(6), 5151–5160. doi:10.1109/TIE.2017.2668983
  • Wu, H., Tsakalis, K. S., & Heydt, G. T. (2004). Evaluation of time delay effects to wide-area power system stabilizer design. Power Systems, IEEE Transactions, 19(4), 1935–1941. doi:10.1109/TPWRS.2004.836272
  • Wu, H., Tsakalis, K. S., Heydt, G. T., Panda, S., & Narendra, K. Y. (2013). Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II. International Journal of Electrical Power & Energy Systems, 53, 54–63. doi:10.1016/j.ijepes.2013.04.003
  • Zeynelgil, H. L., Demiroren, A., & Sengor, N. S. (2002). The application of ANN technique to automatic generation control for multi-area power system. International Journal of Electrical Power & Energy Systems, 24(5), 345–354. doi:10.1016/S0142-0615(01)00049-7