1,474
Views
8
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Corrosion inhibition effect of calcium gluconate on mild steel in artificial seawater

, , & | (Reviewing editor)
Article: 1712155 | Received 29 Jul 2019, Accepted 26 Dec 2019, Published online: 19 Jan 2020

References

  • Abd El Meguid, E. A., Mahmoud, N. A., & Abd El Rehim, S. S. (2000). The effect of some sulphur compounds on the pitting corrosion of type 304 stainless steel. Materials Chemistry and Physics, 63(1), 67–12. doi:10.1016/S0254-0584(99)00206-0
  • Ahamad, I., Prasad, R., & Quraishi, M. A. (2010). Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corrosion Science, 52(3), 933–942. doi:10.1016/j.corsci.2009.11.016
  • Akanji, O. L., Loto, C. A., Abdulwahab, M., & Kolesnikov, A. V. (2016). Anti-corrosion and computational study of mild steel in hydrochloric acid using calcium gluconate as inhibitor. Asian Journal of Chemistry, 28(7), 1417–1423.
  • Ameer, M. A., Fekry, A. M., El-Taib, F., & Heakel, E. (2004). Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochimica Acta, 50(1), 43–49. doi:10.1016/j.electacta.2004.07.011
  • Amel Gharbi, A., Himour, A., Abderrahmane, S., & Abderrahim, K. (2018). Inhibition effect of 2,2ʹ-Bipyridyl on the corrosion of austenitic stainless steel in 0.5M H2SO4. Oriental Journal of Chemistry, 34(1), 314–325. doi:10.13005/ojc/340134
  • Bao, J., Furumoto, K., Fukunaga, K., & Nakao, K. (2001). A kinetic study on air oxidation of glucose catalyzed by immobilized glucose oxidase for production of calcium gluconate. Biochemical Engineering Journal, 8(2), 91–102. doi:10.1016/S1369-703X(00)00140-6
  • Bobina, M., Kellenbergera, A., Millet, J.-P., Muntean, C., & Vaszilcsin, N. (2013). Corrosion resistance of carbon steel in weak acid solutions in the presence of l-histidine as corrosion inhibitor. Corrosion Science, 69, 389–395. doi:10.1016/j.corsci.2012.12.020
  • El-Aila, H. J., Elsousy, K. M., & Hartany, K. A. (2016). Kinetics, equilibrium, and isotherm of the adsorption of cyanide by MDFSD. Arabian Journal of Chemistry, 9(1), S198–S203. doi:10.1016/j.arabjc.2011.03.002
  • El-egamy, S. S., & Badway, W. A. (2004). Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. Journal of Applied Electrochemistry, 34(11), 1153–1158. doi:10.1007/s10800-004-1709-x
  • Fajobi, M. A., Loto, R. T., & Oluwole, O. O. (2019). Corrosion in crude distillation overhead system: A review. Journal of Bio-and Tribo-Corrosion, 5(3), 67. doi:10.1007/s40735-019-0262-4
  • Furtado, L. B., Nascimento, R. C., Seidl, P. R., Guimarães, M. J. O., Costa, L. M., Rocha, J. C., & Ponciano, J. A. C. P. (2019). Eco-friendly corrosion inhibitors based on Cashew nut shell liquid (CNSL) for acidizing fluids. Journal of Molecular Liquids, 284, 393–404. doi:10.1016/j.molliq.2019.02.083
  • Gunasekaran, G., Palaniswamy, N., Apparao, B. V., & Muralidharan, V. S. (1996). Enhanced synergistic inhibition by calcium gluconate in low chloride media. Part I. Kinetics of corrosion. Proceedings of the Indian Academy of Sciences-Chemical Sciences, 108(4), 399–405. Springer India.
  • Hossain, S. Z., Al-Shater, A., Kareem, S. A., Salman, A., Ali, R. A., Ezuber, H., … Razzak, S. A. (2019). Cinnamaldehyde as a green inhibitor in mitigating AISI 1015 carbon steel corrosion in HCl. Arabian Journal for Science and Engineering, 44(6), 5489–5499.
  • Ju, H., Kai, Z. P., & Li, Y. (2008). Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation. Corrosion Science, 50(3), 865–871. doi:10.1016/j.corsci.2007.10.009
  • Karimi, A., Danaee, I., Eskandari, H., & RashvanAvei, M. (2016). Adsorption isotherm and inhibition effect of a synthesized di-(m-Formylphenol)-1,2-cyclohexandiimine on corrosion of steel X52 in HCl solution. Journal of Central South University, 23(2), 249–257. doi:10.1007/s11771-016-3068-2
  • Karthikaiselvi, R., & Subhashini, S. (2014). Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline). Journal of the Association of Arab Universities for Basic and Applied Sciences, 16, 74–82. doi:10.1016/j.jaubas.2013.06.002
  • Lorenzo, G. D., Rizzo, F., Formisano, A., Landolfo, R., & Guastaferro, A. (2019). Corrosion wastage models for steel structures: Literature review and a new interpretative formulation for wrought iron alloys. Key Engineering Materials, 813, 209–214. doi:10.4028/www.scientific.net/KEM.813
  • Loto, C. A., Loto, R. T., & Popoola, A. P. I. (2011). Electrode potential monitoring of effect of plants extracts addition on the electrochemical corrosion behaviour of mild steel reinforcement in concrete. International Journal of Electrochemical Science, 6(8), 3452–3465.
  • Loto, R. T. (2013). Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media. Journal of Materials and Environmental Science, 4(4), 448–459.
  • Loto, R. T. (2016). Electrochemical analysis of the corrosion inhibition properties of 4-hydroxy-3-methoxybenzaldehyde on low carbon steel in dilute acid media. Cogent Engineering, 3(1), 1242107. doi:10.1080/23311916.2016.1242107
  • Loto, R. T. (2018). Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions. Results in Physics, 8, 172–179. doi:10.1016/j.rinp.2017.12.003
  • Loto, R. T., & Babalola, P. (2017). Corrosion polarization behavior and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations. Cogent Engineering, 4(1), 1422229. doi:10.1080/23311916.2017.1422229
  • Loto, R. T., & Loto, C. A. (2012). Effect of P-phenylediamine on the corrosion of austenitic stainless steel type 304 in hydrochloric acid. International Journal of Electrochemical Science, 7(10), 9423–9440.
  • Loto, R. T., & Loto, C. A. (2018). Corrosion behaviour of S43035 ferritic stainless steel in hot sulphate/chloride solution. Journal of Materials Research and Technology, 7(3), 231–239. doi:10.1016/j.jmrt.2017.07.004
  • Loto, R. T., Loto, C. A., Joseph, O., & Olanrewaju, G. (2016). Adsorption and corrosion inhibition properties of thiocarbanilide on the electrochemical behavior of high carbon steel in dilute acid solutions. Results in Physics, 6, 305–314. doi:10.1016/j.rinp.2016.05.013
  • Obot, I. B., Obi-Egbedi, N. O., & Umoren, S. A. (2009). Antifungal drugs as corrosion inhibitors for aluminium in 0.1 M HCl. Corrosion Science, 51(8), 1868–1875. doi:10.1016/j.corsci.2009.05.017
  • Papavinasam, S. (2013). Corrosion control in the oil and gas industry. Amsterdam: Elsevier.
  • Phanis, S. K., Satpati, A. K., Muthe, K. P., Vyas, J. C., & Sundaresan., R. I. (2003). Comparison of rolled and heat treated SS304 in chloride solution using electrochemical and XPS techniques. Corrosion Science, 45(2003), 2467–2483. doi:10.1016/S0010-938X(03)00099-4
  • Popoola, L. T., Grema, A. S., Latinwo, G. K., Gutti, B., & Balogun, A. S. (2013). Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry, 4(1), 35. doi:10.1186/2228-5547-4-35
  • Rajendran, S., Apparao, B. V., & Palaniswamy, N. (1998). Technical note Calcium gluconate as corrosion inhibitor for mild steel in low chloride media. British Corrosion Journal, 33(4), 315–317. doi:10.1179/bcj.1998.33.4.315
  • Rizzo, F., Di Lorenzo, G., Formisano, A., & Landolfo, R. (2019). Time-dependent corrosion wastage model for wrought iron structures. Journal of Materials in Civil Engineering, 31(8), 4019165. doi:10.1061/(ASCE)MT.1943-5533.0002710
  • Rosli, N. R., Yusuf, S. M., Sauki, A., & Razali, W. M. R. W. (2019). Musa Sapientum (Banana) peels as green corrosion inhibitor for mild steel. Key Engineering Materials, 797, 230–239. doi:10.4028/www.scientific.net/KEM.797
  • Saremi, M., Benehkohal, N. P., Dehghanian, C., & Zebardast, H. R. (2009). Effect of calcium gluconate concentration and hydrodynamic effect on mild steel corrosion inhibition in simulated cooling water. Corrosion, 65(12), 778–784. doi:10.5006/1.3319104
  • Yang, Q., & Luo, J. L. (2001). Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel. Electrochimica Acta, 46(6), 851–859. doi:10.1016/S0013-4686(00)00661-7
  • Yurt, A., Balaban, A., Kandemir, S. U., Bereket, G., & Erk, B. (2004). Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel. Materials Chemistry and Physics, 85(2–3), 420–426. doi:10.1016/j.matchemphys.2004.01.033
  • Zee, M., Chikkam, A. K., Larkin, E., Taheri, P., Rezaie, A., & Campbell, A. (2019). Corrosion risk assessment, failure analysis and corrosion mitigation for aboveground storage tanks and case histories. Corrosion 2019. Nashville, Tennessee, USA: NACE International.