2,131
Views
15
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Mechanical property prediction of SPS processed GNP/PLA polymer nanocomposite using artificial neural network

ORCID Icon, , , , , & | (Reviewing editor) show all
Article: 1720894 | Received 08 Oct 2019, Accepted 17 Jan 2020, Published online: 06 Feb 2020

References

  • Adesina, O. T., Sadiku, E. R., Jamiru, T., Ogunbiyi, O. F., Beneke, L. W., & Adegbola, A. T. (2019). Optimization of SPS processing parameters on the density and hardness properties of graphene reinforced polylactic acid nanocomposite. The International Journal of Advanced Manufacturing Technology, 102(9–12), 4047–17. London: Springer. doi:10.1007/s00170-019-03530-7
  • Akkurt, S., Ozdemir, S., Tayfur, G., & Akyol, B. (2003). The use of GA-ANNs in the modeling of compressive strength of cement mortar. Cement and Concrete Research, 33(7), 973–979. doi:10.1016/S0008-8846(03)00006-1
  • Al-Haik, M. S., Hussaini, M. Y., & Garmestani, H. (2006). Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. International Journal of Plasticity, 22(7), 1367–1392. doi:10.1016/j.ijplas.2005.09.002
  • Altarazi, S., Ammouri, M., & Hijazi, A. (2018). Artificial neural network modeling to evaluate polyvinylchloride composites’ properties. Computational Materials Science, 153, 1–9. doi:10.1016/j.commatsci.2018.06.003
  • Barbero, E. J. (2017). Introduction to composite materials design. Boca Raton: CRC press.
  • Batakliev, T., Georgiev, V., Ivanov, E., Kotsilkova, R., Di Maio, R., Silvestre, C., & Cimmino, S. (2019). Nanoindentation analysis of 3D printed poly (lactic acid)‐based composites reinforced with graphene and multiwall carbon nanotubes. Journal of Applied Polymer Science, 136(13), 47260. doi:10.1002/app.v136.13
  • Bayraktar, Ö., Uzun, G., Çakiroğlu, R., & Guldas, A. (2017). Experimental study on the 3D‐printed plastic parts and predicting the mechanical properties using artificial neural networks. Polymers for Advanced Technologies, 28(8), 1044–1051. doi:10.1002/pat.v28.8
  • Burgaz, E., Yazici, M., Kapusuz, M., Alisir, S. H., & Ozcan, H. (2014). Prediction of thermal stability, crystallinity and thermomechanical properties of poly (ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochimica Acta, 575, 159–166. doi:10.1016/j.tca.2013.10.032
  • Cavaliere, P. (ed.). (2019). Spark Plasma Sintering of materials: Advances in processing and applications. Switzerland: Springer. https://doi.org/10.1007/978-3-030-05327-7
  • Cheung, V., & Cannons, K. (2002). An introduction to neural networks. Canada: University of Manitoba.
  • El Kadi, H. (2006). Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—A review. Composite Structures, 73(1), 1–23. doi:10.1016/j.compstruct.2005.01.020
  • German, R. M. (2010). Thermodynamics of sintering. In Zhigang Zak Fang (Ed.), Sintering of advanced materials (pp. 3–32).  Abington Hall,  Cambridge: Woodhead Publishing.
  • Gui, Z., Lu, C., & Cheng, S. (2013). Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide. Polymer Testing, 32(1), 15–21. doi:10.1016/j.polymertesting.2012.08.011
  • Hinton, G. E. (1992). How neural networks learn from experience. Scientific American, 267(3), 144–151. doi:10.1038/scientificamerican0992-144
  • Jain, A. K., Mao, J., & Mohiuddin., K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31–44. doi:10.1109/2.485891
  • Jayabal, S., Rajamuneeswaran, S., Ramprasath, R., & Balaji, N. S. (2013). Artificial neural network modelling of mechanical properties of calcium carbonate impregnated coir-polyester composites. Transactions of the Indian Institute of Metals, 66(3), 247–255. doi:10.1007/s12666-013-0255-9
  • Jebawi, K. A., Sixou, B., Seguela, R., Vigier, G., & Chervin, C. (2006). Hot compaction of polyoxymethylene, part 1: Processing and mechanical evaluation. Journal of Applied Polymer Science, 102(2), 1274–1284. doi:10.1002/(ISSN)1097-4628
  • Jiang, Z., Gyurova, L. A., Schlarb, A. K., Friedrich, K., & Zhang, Z. (2008). Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Composites Science and Technology, 68(3–4), 734–742. doi:10.1016/j.compscitech.2007.09.022
  • Jiang, Z., Zhang, Z., & Friedrich, K. (2007). Prediction on wear properties of polymer composites with artificial neural networks. Composites Science Technology, 67, 168–176. doi:10.1016/j.compscitech.2006.07.026
  • Kashyap, S., & Datta, D. (2015). Process parameter optimization of plastic injection molding: A review. International Journal of Plastics Technology, 19(1), 1–18. doi:10.1007/s12588-015-9115-2
  • Khanam, P. N., AlMaadeed, M. A., AlMaadeed, S., Kunhoth, S., Ouederni, M., Sun, D., … Mayoral, B. (2016). Optimization and prediction of mechanical and thermal properties of graphene/ LLDPE nanocomposites by using artificial neural networks. International Journal of Polymer Science, 2016, 1–16. https://doi.org/10.1155/2016/5340252
  • Kim, M., Jeong, J. H., Lee, J. Y., Capasso, A., Bonaccorso, F., Kang, S. H., … Lee, G. H. (2019). Electrically conducting and mechanically strong graphene–polylactic acid composites for 3D printing. ACS Applied Materials & Interfaces, 11(12), 11841–11848. doi:10.1021/acsami.9b03241
  • Kim., B. K. (2012). Graphene and graphene/polymer nanocomposites. Express Polymer Letters, 6(10), 772. doi:10.3144/expresspolymlett.2012.82
  • Lahiri, D., Dua, R., Zhang, C., de Socarraz-novoa, I., Bhat, A., Ramaswamy, S., & Agarwal., A. (2012). Graphene nanoplatelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro. ACS Applied Materials and Interfaces, 4(4), 2234–2241. doi:10.1021/am300244s
  • Mahdavi Jafari, M., Soroushian, S., & Khayati, G. R. (2017). Hardness optimization for al6061- MWCNT nanocomposite prepared by mechanical alloying using artificial neural networks and genetic algorithm. Journal of Ultrafine Grained and Nanostructured Materials, 50(1), 23–32.
  • Mansour, M., Tsongas, K., & Tzetzis, D. (2019). Measurement of the mechanical and dynamic properties of 3D printed polylactic acid reinforced with graphene. Polymer-Plastics Technology and Materials, 58(11), 1234–1244. doi:10.1080/03602559.2018.1542730
  • Murariu, M., Dechief, A. L., Ramy-Ratiarison, R., Paint, Y., Raquez, J. M., & Dubois, P. (2015). Recent advances in production of poly (lactic acid) (PLA) nanocomposites: A versatile method to tune crystallization properties of PLA. Nanocomposites, 1(2), 71–82. doi:10.1179/2055033214Y.0000000008
  • Pinto, A. M., Martins, J., Moreira, J. A., Mendes, A. M., & Magalhaes, F. D. (2013). Dispersion of graphene nanoplatelets in poly(vinyl acetate) latex and effect on adhesive bond strength. Polymer International, 62(6), 928–935. doi:10.1002/pi.2013.62.issue-6
  • Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff., R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5–25. doi:10.1016/j.polymer.2010.11.042
  • Pradeep, J., Srinivasan, E., & Himavathi, S. (2012). Neural network based recognition system integrating feature extraction and classification for english handwritten. International Journal of Engineering, 25(2), 99–106. doi:10.5829/idosi.ije.2012.25.02b.03
  • Prasad, G. E., Gowda, B. K., & Velmurugan, R. (2014). Prediction of properties of coir fiber reinforced composite by ANN. In G.P. Tandon., Srinivasan Arjun Tekalur.,  Carter Ralph Nancy R. Sottos., Benjamin Blaiszik (Eds.), Experimental mechanics of composite, hybrid, and multifunctional materials (Vol. 6, pp. 1–7). Cham: Springer.
  • Prashantha, K., & Roger, F. (2017). Multifunctional properties of 3D printed poly (lactic acid)/graphene nanocomposites by fused deposition modeling. Journal of Macromolecular Science, Part A, 54(1), 24–29. doi:10.1080/10601325.2017.1250311
  • Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8, 6354–6374. doi:10.1016/j.jmrt.2019.09.068
  • Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1667. doi:10.3390/polym11101667
  • Rao, K. S., Varadarajan, Y. S., & Rajendra, N. (2014). Artificial neural network approach for the prediction of abrasive wear behavior of carbon fabric reinforced epoxy composite. NISCAIR-CSIR, India: NISCAIR PUBLICATIONS.
  • Seyhan, A. T., Tayfur, G., Karakurt, M., & Tanogˇlu, M. (2005). Artificial neural network (ANN) prediction of compressive strength of VARTM processed polymer composites. Computational Materials Science, 34(1), 99–105. doi:10.1016/j.commatsci.2004.11.001
  • Sha, W., & Edwards, K. L. (2007). The use of artificial neural networks in materials science based research. Materials & Design, 28(6), 1747–1752. doi:10.1016/j.matdes.2007.02.009
  • Shen, C., Wang, L., & Li, Q. (2007). Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. Journal of Materials Processing Technology, 183(2–3), 412–418. doi:10.1016/j.jmatprotec.2006.10.036
  • Suárez, M., Fernández, A., Menéndez, J. L., Torrecillas, R., Kessel, H. U., Hennicke, J., … Kessel, T. (2013). Challenges and opportunities for spark plasma sintering: A key technology for a new generation of materials. In Sintering applications. London, UK: IntechOpen.
  • Tsai, S. (2018). Introduction to composite materials. New York: Routledge.https://doi.org/10.1201/9780203750148
  • Velmurugan, C., & Senthilkumar, V. (2019). Optimization of spark plasma sintering parameters for NiTiCu shape memory alloys. Materials and Manufacturing Processes, 34(4), 369–378. doi:10.1080/10426914.2018.1512118
  • Vineela, M. G., Dave, A., & Chaganti, P. K. (2018). Artificial neural network based prediction of tensile strength of hybrid composites. Materials Today: Proceedings, 5(9), 19908–19915.
  • Xie, W., He, J., Zhu, S., Holgate, T., Wang, S., Tang, X., … Tritt, T. M. (2011). Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi, Sb) 2 Te 3 thermoelectric materials. Journal of Materials Research, 26(15), 1791–1799. doi:10.1557/jmr.2011.170
  • Xu, Y., Zhang, Q., Zhang, W., & Zhang, P. (2015). Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact. The International Journal of Advanced Manufacturing Technology, 76(9–12), 2199–2208. doi:10.1007/s00170-014-6434-y
  • Yang, B., Wang, D., Chen, F., Su, L. F., Miao, J. B., Chen, P., … Liu, J. W. (2019). Melting and crystallization behaviors of poly (lactic acid) modified with graphene acting as a nucleating agent. Journal of Macromolecular Science, Part B, 58(2), 290–304. doi:10.1080/00222348.2018.1564222
  • Zhang, Z., Barkoula, N. M., Kocsis, J. K., & Friedrich., K. (2003). Artificial neural network predictions on erosive wear of polymers. Wear, 255(1–6), 708–713. doi:10.1016/S0043-1648(03)00149-2
  • Zhang, Z., & Friedrich, K. (2003). Artificial neural networks applied to polymer composites: A review. Composites Science and Technology, 63(14), 2029–2044. doi:10.1016/S0266-3538(03)00106-4