4,203
Views
21
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Influence of bamboo fiber and limestone powder on the properties of self-compacting concrete

ORCID Icon, ORCID Icon, , & | (Reviewing editor)
Article: 1721410 | Received 04 Apr 2019, Accepted 19 Jan 2020, Published online: 06 Feb 2020

References

  • ACI Committee 544.1R-96. (2002). ACI technical report on fiber reinforced concrete (FRC). Detriot: American Concrete Institute (ACI).
  • Adhavanathan, T. (2017). Studies on properties of coir fibre reinforced. International Journal of Science Technology and Engineering, 4(6), 37–18.
  • Adom-Asamoah, M., Osei, J., & Afrifa, R. (2018). Bamboo reinforced self-compacting concrete one-way slabs for sustainable construction in rural areas. Cogent Engineering, 5, 1477464. 10.1080/23311916.2018.1477464. doi:10.1080/23311916.2018.1477464
  • Amirtharaj, J. (2017). Effects of coir fiber on self compacting concrete. International Journal for Scientific Research and Development, 5(6), 1373–1374.
  • Archila, H., Kaminski, S., Trujillo, D., Escamilla, E. Z., & Harries, K. A. (2018). Bamboo reinforced concrete: A critical review. Materials and Structures, 51, 102. doi:10.1617/s11527-018-1228-6
  • ASTM C127-15. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. West Conshohocken, PA: ASTM International.
  • ASTM C33-03. (2003). Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International.
  • Awoyera, P. O., & Ede, A. N. (2017). Bamboo versus tubular steel scaffolding in construction: Pros and Cons. In S. Hashmi (Ed.), Reference module in materials science and materials engineering (pp. 1–10). Oxford. ISBN: 978-0-12-803581-8.
  • Bashir, A., Gupta, C., Abubakr, M. A., & Abba, S. I. (2018). Analysis of Bamboo fibre reinforced beam. Journal of Steel Structures and Construction, 4, 146. doi:10.4172/2472-0437.1000146
  • Bindu, D. N. (2016). Bamboo fiber reinforced concrete - A review. International Journal of Science Technology and Management, 5(6), 189–193.
  • BS EN 12390-3. (2002). Testing hardened concrete; part 3: Compressive strength of test specimens. Brussels: European Committee for Standardization.
  • BS EN 12390-6. (2002). Testing hardened concrete; part 6: Split tensile strength of test specimens. Brussels: European Committee for Standardization.
  • BS EN 197. (2000). Cement, composition, specifications, and conformity criteria for common cements. London: British Standards Institution.
  • BS EN 206. (2013). Concrete – Specification, performance, production and conformity. London: British standards Institution.
  • Chattopadhyay, S. K., Khandal, R. K., Uppaluri, R., & Ghoshal, A. (2011). Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. Journal of Applied Polymer Science, 119(3), 1619–1626. doi:10.1002/app.v119:3
  • Costa Junior, A. E., Barreto, A. C. H., Rosa, D. S., Maia, F. J. N., Lomonaco, D., & Mazzetto, S. E. (2014). Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with Bamboo fibers. Journal of Composites Materials, 1–13. doi:10.1177/0021998314545182
  • Dewi, S. M., Wijaya, M. N., & Christin Remayanti, N. (2017). The use of bamboo fiber in reinforced concrete beam to reduce crack. AIP Conference Proceedings, 1887, 020003. doi:10.1063/1.5003486
  • Ede, A. N., & Agbede, J. O. (2015). Use of coconut husk fiber for improved compressive and flexural strength of concrete. International Journal of Scientific & Engineering Research, 6(2), 968–974.
  • Ede, A. N., & Ige, A. O. (2014). Optimal polypropylene fiber content for improved compressive and flexural strength of concrete. IOSR Journal of Mechanical and Civil Engineering, 11(3), 129–135. doi:10.9790/1684
  • Ede, A. N., Olofinnade, O. M., & Awoyera, P. O. (2018). Structural form works and safety challenges: Role of bamboo scaffold on collapse of reinforced concrete buildings in Nigeria. International Journal of Civil Engineering and Technology, 9(9), 1675–1681.
  • Ede, A. N., Olofinnade, O. M., Ugwu, E. I., & Salau, A. O. (2018). Potentials of Momordica angustisepala fiber in enhancing strengths of normal Portland cement concrete. Cogent Engineering, 5(1), 1–17. doi:10.1080/23311916.2018.1431353
  • Ede, A. N., Oshogbunu, O., Olofinnade, O. M., Jolayemi, K. J., Oyebisi, S. O., Mark, O. G., & Awoyera, P. O. (2019, May 20–25). Effects of bamboo fibers and limestone powder on fresh properties of self-compacting concrete. In Proceedings of 10th Interdependence between structural engineering and construction management, ISEC10, Chicago, USA.
  • EFNARC. (2005). Specification and guidelines for self-compacting concrete. Surrey, United Kingdom: European Federation.
  • Hossain, A., Lachemi, M., Sammour, M., & Sonebi, M. (2013). Strength and fracture energy characteristics of self-consolidating concrete incorporating polyvinyl alcohol, steel and hybrid fibres. Construction and Building Materials, 45, 20–29. doi:10.1016/j.conbuildmat.2013.03.054
  • Li, Z. (2011). Advanced concrete technology. Hobo-ken, NJ: John Wiley & Sons, Inc.
  • Mehta, K. P., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties, and materials. California: McGraw-Hill.
  • Mounir, M. K., Mohammed, A. S., Zeinab, A. E., & Kasem, B. M. (2014). Mechanical properties of self-compacted fiber concrete mixes. HBRC Journal, 10(1), 25–34. doi:10.1016/j.hbrcj.2013.05.012
  • Okamura, H., & Ouchi, M. (1999). Self-compacting concrete. Development, present use and future. First international RILEM symposium on self-compacting concrete (pp. 3–14). Stockholm, Sweden: Rilem Publications.
  • Olofinnade, O. M., Ndambuki, J. M., Ede, A. N., & Booth, C. (2017). Application of waste glass powder as a partial cement substitute towards more sustainable concrete production. International Journal of Engineering Research in Africa, 31, 77–93. doi:10.4028/www.scientific.net/JERA.31
  • Olofinnade, O. M., Ndambuki, J. M., Ede, A. N., & Olukanni, D. O. (2016). Effect of substitution of crushed waste glass as partial replacement for natural fine and coarse aggregate in concrete. Materials Science Forum, 866, 58–62. doi:10.4028/www.scientific.net/MSF.866.58
  • Oshogbunu, O. A. (2018). Mechanical and microstructural properties of bamboo fiber reinforced self-compacting concrete (Unpublished Thesis). Department of Civil Engineering, Covenant University Ota, Nigeria.
  • Singh, N., Mithulraj, M., & Arya, S. (2019). Utilization of coal bottom ash in recycled concrete aggregates based self-compacting concrete blended with metakaolin. Resources, Conservation and Recycling, 144, 240–251. doi:10.1016/j.resconrec.2019.01.044
  • Singh, N., & Singh, S. P. (2018a). Carbonation resistance of self-compacting recycled aggregate concretes with silica fume. Journal of Sustainable Cement-Based Materials, 7(4), 214–238. doi:10.1080/21650373.2018.1471425
  • Singh, N., & Singh, S. P. (2018b). Validation of carbonation behavior of self- compacting concrete made with recycled aggregates using microstructural and crystallization investigations. European Journal of Environmental and Civil Engineering, 1–24. doi:10.1080/19648189.2018.1500312
  • Singh, N., & Singh, S. P. (2019). Improving the carbonation resistance of self-compacting concrete containing recycled concrete aggregates using blended cements. The Indian Concrete Journal, 93(4), 46–60.
  • Surabhi, C. S., Mini, S., & Syam, P. (2009). Influence of limestone powder on properties of self-compacting concrete. 10th National conference on technological trends (NCTT09) Kerala, India; (pp. 161–164).
  • Zhu, W., & John, C. G. (2005). Use of different limestone and chalk powders in self-compacting concrete. Cement & Concrete Research, 35, 1457–1462. doi:10.1016/j.cemconres.2004.07.001