2,691
Views
18
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

A review of ceramic/bio-based hybrid reinforced aluminium matrix composites

ORCID Icon, & ORCID Icon | (Reviewing editor)
Article: 1727167 | Received 23 Mar 2019, Accepted 02 Feb 2020, Published online: 16 Feb 2020

References

  • Alaneme, K. K., Ademilua, B. O., & Bodunrin, M. O. (2013). Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash. Tribology in Industry, 35(1), 25–19.
  • Alaneme, K. K., Adewale, T. M., & Olubambi, P. A. (2014). Corrosion and wear behaviour of Al-Mg-Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide. Journal of Materials Research and Technology, 3(1), 9–16.
  • Alaneme, K. K., Akintunde, I. B., Olubambi, P. A., & Adewale, T. M. (2013). Fabrication characteristics and mechanical behaviour of rice husk ash - alumina reinforced Al-Mg-Si alloy matrix hybrid composites. Journal of Materials Research and Technology, 2(1), 60–67. doi:10.1016/j.jmrt.2013.03.012
  • Alaneme, K. K., & Aluko, A. O. (2012). Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Scientia Iranica, 19(4), 992–996. doi:10.1016/j.scient.2012.06.001
  • Alaneme, K. K., & Bodunrin, M. O. (2011). Corrosion behavior of alumina reinforced aluminium (6063) metal matrix composites. Journal of Minerals and Materials Characterization and Engineering, 10(12), 1153–1165. doi:10.4236/jmmce.2011.1012088
  • Alaneme, K. K., & Sanusi, K. O. (2015). Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite. Engineering Science and Technology-An International Journal, 18, 416–422. doi:10.1016/j.jestch.2015.02.003
  • Allison, J. E., & Cole, G. S. (1993). View record in scopus | cited by in scopus (122). Journal of Metals, 45, 19–24.
  • Al-Mosawi, B. T., Wexler, D., & Calka, A. (2017). Characterization and mechanical properties of α-Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball magneto-milling and uniaxial hot pressing. Advanced Powder Technology, 28(3), 1054–1064. doi:10.1016/j.apt.2017.01.011
  • Baradeswaran, A. (2011). Effect of graphite content on tribological behaviour of aluminium alloy graphite composite. European Journal of Scientific Research, 53(2), 163–170.
  • Bodunrin, M. O., Alaneme, K. K., & Chown, L. H. (2015). Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of Materials Research and Technology, 4(4), 434–445. doi:10.1016/j.jmrt.2015.05.003
  • Boopathi, M., Arulshri, K. P., & Iyandurai, N. (2013). Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. American Journal of Applied Science, 10(3), 219–229. doi:10.3844/ajassp.2013.219.229
  • Chawla, N., & Shen, Y. (2001). Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 3, 357–370. doi:10.1002/(ISSN)1527-2648
  • Chen, R., Lwabuchi, A., Shimizu, T., Shin, H. S., & Mifune, H. (1997). The sliding wear resistance behavior of NiAI and SiC particles reinforced aluminium alloy matrix composites. Wear, 213(1–2), 175–184. doi:10.1016/S0043-1648(97)00123-3
  • Cheng, Y. L., Chen, Z. H., Wu, H. L., & Wang, H. M. (2007). The corrosion behaviour of the aluminum alloy 7075/SiCp metal matrix composite prepared by spray deposition. Materials and Corrosion, 58(4), 280–284. doi:10.1002/(ISSN)1521-4176
  • Christman, T., Needleman, A., & Suresh, S. (1989). An experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica, 37(11), 3029–3050. doi:10.1016/0001-6160(89)90339-8
  • Das, S., Das, S., & Das, K. (2009). Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt%Cu alloy matrix composites–a comparative study. Composite Science and Technology, 67, 746–751. doi:10.1016/j.compscitech.2006.05.001
  • Dasgupta, R. (2012). Aluminium alloy-based metal matrix composites: A potential material for wear resistant applications. International Scholarly Research Network-Metallurgy, (2012, 1–14.
  • Delta Lab. (2018). Rice husks: A future in biofuel production? www.Delta.Tudelft.Nl/Article/Rice-Husks-Future-Biofuel-Production
  • Deuis, R. L., Subramanian, C., & Yellup, J. M. (1996). Abrasive wear of aluminium composites-a review. Wear, 201, 132–144. doi:10.1016/S0043-1648(96)07228-6
  • Dolata, G. A., & Wieczorek, J. (2007). Tribological properties of hybrid composites containing two carbide phases. Archives of Materials Science and Engineering, 28(3), 149–155.
  • Escalera-Lozano, R., Gutierrez, C., Pech-Canul, M. A., & Pech-Canul, M. I. (2008). Degradation of Al/SiCp composites produced with rice-hull ash and aluminium cans. Waste Management, 28, 389–395. doi:10.1016/j.wasman.2006.12.005
  • Flexicon Corporation. (2018). Fly ash, www.flexicon.com/Materials-Handled/Fly-Ash.html
  • Gireesh, C. H., Prasad, K. D., Ramji, K., & Vinay, P. V. (2018). Mechanical characterization of aluminium metal matrix composite reinforced with Aloe vera powder. Materials Today Proceedings, 5, 3289–3297.
  • Girot, F. A., Albingre, L., Quenisset, J. M., & Naslain, R. (1987). Rheocasting Al matrix composites. Journal of Metals, 39(11), 18–21.
  • Gorjan, L., Boretius, M., Blugan, G., Gili, F., Mangherini, D., Lizarralde, X., … Kuebler, J. (2016). Ceramic protection plates brazed to aluminium brake discs. Ceramics International, 42(14), 1573–1574. doi:10.1016/j.ceramint.2016.07.035
  • Haque, S., Bharti, P. K., & Ansari, A. H. (2014). Mechanical and machining properties analysis of Al6061-Cu-reinforced SiCp metal matrix composite. Journal of Minerals and Materials Characterization and Engineering, 2, 54–60. doi:10.4236/jmmce.2014.21009
  • Harnby, N., Edward, M. F., & Nienow, A. W. (1985). Mixing in process industries. London: Butterworths.
  • Harti, J., Prasad, T. B., Nagaral, M., & Rao, K. N. (2016). Hardness and tensile behaviour of Al2219-TiC metal matrix composites. Journal of Mechanical Engineering and Automation, 6(5), 8–12.
  • Ikubanni, P. P., Adediran, A. A., Adeleke, A. A., Ajao, K. R., & Agboola, O. O. (2017). Mechanical properties improvement evaluation of medium carbon steel quenched in different media. International Journal of Engineering Research in Africa, 32, 1–10. doi:10.4028/www.scientific.net/JERA.32.1
  • India Mart. (2019). Coconut shell. www.indiamart.com/proddetail/dry-coconut-shell-16517591173.html
  • James, S. J., & Annamalai, A. R. (2017). Fabrication of aluminium metal matrix composite and testing of its property. Mechanics, Materials Science and Engineering, 9, 306–311.
  • Jeykrishnan, J., Ramnath, B. V., Savariraj, X. H., Prakash, R. D., Rajan, V. R. D., & Kumar, D. D. (2016). Investigation on tensile and impact behaviour of aluminium based silicon carbide metal matrix composites. Indian Journal of Science and Technology, 9(37), 1–4. doi:10.17485/ijst/2016/v9i37/101979
  • Kala, H., Mer, K. K. S., & Kumar, S. (2014). A review on mechanical and tribological behaviours of stir cast aluminium matrix composites. Procedia Materials Science, 6, 1951–1960. doi:10.1016/j.mspro.2014.07.229
  • Kamat, S. V., Hirth, S. P., & Mehrabin, R. M. (1989). Mechanical properties of particulate-reinforced aluminium-matrix composites. Acta Metallurgy, 37, 2395–2402. doi:10.1016/0001-6160(89)90037-0
  • Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161, 381–387. doi:10.1016/j.jmatprotec.2004.07.068
  • Kok, M. (2006). Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites: Part A, 37, 457–464. doi:10.1016/j.compositesa.2005.05.038
  • Kumar, S., Panwar, R. S., & Pandey, O. P. (2013). Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminium composites. Ceramics International, 39, 6333–6342.
  • Kurumlu, D., Payton, E. J., Young, M. L., Schöbel, M., Requena, G., & Eggeler, G. (2012). High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography. Acta Materialia, 60(1), 67–78. doi:10.1016/j.actamat.2011.09.022
  • Madhusudan, S., Sarcar, M. M. M., & Rao, N. B. R. M. (2016). Mechanical properties of aluminium-copper(p) composite metallic materials. Journal of Applied Research and Technology, 14, 293–299. doi:10.1016/j.jart.2016.05.009
  • Mahendra, K. V., & Radha Krishna, K. (2010). Characteristics of stir cast Al.Cu (fly ash +SiC) hybrid metal matrix composites. Journal of Composite Materials, 44(8), 989–1005. doi:10.1177/0021998309346386
  • Mavhungu, S. T., Akinlabi, E. T., Onitiri, M. A., & Varachia, F. M. (2017). Aluminium matrix composites for industrial use: Advances and trends. Procedia Manufacturing, 7, 178–182. doi:10.1016/j.promfg.2016.12.045
  • Mehdi, H., Kumar, A., Mahmood, A., & Saini, M. (2014). Experimental analysis of mechanical properties of composite material reinforced by aluminium-synthetic fibers. International Journal of Mechanical Engineering, 4(2), 59–69.
  • Milan, M. T., & Bowen, P. (2004). Tensile and fracture toughness properties of SiCp reinforced Al alloys: Effects of particle size, particle volume fraction and matrix strength. Journal of Materials Engineering and Performance, 13, 775–783. doi:10.1361/10599490421358
  • Mohankumar, T. S., Srinivas, S., Ramachandra, M., Mahendra, K. V., & Nagaral, M. (2015). Mechanical properties of Al-4.5 wt.% Cu-SiC and Al-4.5 wt.% Cu-Fly ash composites. International Journal of Enhanced Research in Science, Technology and Engineering, 4, 7.
  • Nagaral, M., Auradi, V., & Kori, S. A. (2015). Microstructure and mechanical properties of Al6061-graphite composites fabricated by stir casting process. Applied Mechanics and Materials, 766-767, 308–314. doi:10.4028/www.scientific.net/AMM.766-767.308
  • Narula, C. K., Allison, J. E., Bauer, D., & Gandhi, H. S. (1996). Advanced materials for automobiles. CHEMTECH, 26, 48.
  • Olugbenga, O. A., & Akinwole, A. A. (2010). Characteristics of bamboo leaf ash stabilization on lateritic soil in highway construction. International Journal of Engineering and Technology, 2(4), 212–219.
  • Parswajinan, C., Vijaya Ramnath, B., Abishek, S., Niharishsagar, B., & Sridhar, G. (2018). Hardness and impact behaviour of aluminium metal matrix composite. In: The 3rd international conference on materials and manufacturing engineering 2018 in IOP Conf. Series. Materials Science and Engineering, 390, 1–6.
  • Pooernesh, M., Harish, N., & Aithal, K. (2016). Study of mechanical properties of aluminium alloy composites. American Journal of Materials Science, 6(4), 72–76.
  • Prasad, D. V., & Shoba, C. (2016). Experimental evaluation onto the damping behaviour of Al/SiC/RHA hybrid composites. Journal of Materials Research and Technology, 5(2), 123–130. doi:10.1016/j.jmrt.2015.08.001
  • Prasad, D. V., Shoba, C., & Ramanaiah, N. (2014). Investigations of mechanical properties of aluminium hybrid composites. Journal of Material Technology, 3(1), 79–85. doi:10.1016/j.jmrt.2013.11.002
  • Prasad, S. D., & Krishna, R. A. (2011). Production and mechanical properties of A356.2/RHA composites. International Journal of Advance Science and Technology, 33, 51–58.
  • Raei, M., Panjepour, M., & Meratian, M. (2016). Effect of stirring speed and time on microstructure and mechanical properties of cast Al-Ti-Zr-B4C composite produced by stir casting. Russian Journal of Non-Ferrous Metals, 57(4), 347–360. doi:10.3103/S1067821216040088
  • Rajesh, A., & Santosh, D. (2017). Mechanical properties of Al-SiC metal matrix composites fabricated by stir casting route. Research Medical Engineering Science, 2(6), 1–6.
  • Rao, J. B., Rao, D. B., & Bhargava, N. R. M. R. (2010). Development of light weight Al-Fly ash composites. International Journal of Engineering Science and Technology, 2(11), 50–59.
  • Ravindran, P., Manisekar, K., Narayanasamy, R., & Narayanasamy, P. (2013). Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceramics International, 39(2), 1169–1182. doi:10.1016/j.ceramint.2012.07.041
  • Sahu, M. K., & Sahu, R. K. (2018). Fabrication of aluminium matrix composites by stir casting technique and stirring process parameters optimization. Advance Casting Technologies, Chapter 7, 111–126.
  • Sajjadi, S. A., Ezatpour, H. R., & Beygi, H. (2011). Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Materials Science and Engineering- A, 528, 8765–8771. doi:10.1016/j.msea.2011.08.052
  • Selvam, J. D. R., Smart, R., & Dinaharan, D. S. (2013). Synthesis and characterization of Al6061-Fly ASHP-SiCp composites by stir casting and compo casting methods. Energy Procedia, 34, 637–646. doi:10.1016/j.egypro.2013.06.795
  • Singh, G., & Goyal, S. (2016). Microstructure and mechanical behaviour of AA6082-T6/SiC/B4C-based aluminium hybrid composites. Particulate Science and Technology. doi:10.1080/02726351.2016.1227410
  • Singh, J., & Chauwan, A. (2016). Characterization of hybrid aluminium matrix composites for advanced applications-A review. Journal of Materials Research and Technology, 5(2), 159–169. doi:10.1016/j.jmrt.2015.05.004
  • Siva Prasad, D., & Shoba, C. (2014). Hybrid composites – A better choice for high wear resistant materials. Journal of Materials Research and Technology, 3(2), 172–178. doi:10.1016/j.jmrt.2014.03.004
  • Smith, W. F., & Hashemi, J. (2008). Materials science and engineering. New Delhi: Tata McGraw Hill Education Private Limited.
  • Su, H., Gao, W., Feng, Z., & Lu, Z. (2012). Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminium matrix composites. Materials Design, 36, 590–596. doi:10.1016/j.matdes.2011.11.064
  • Sudarshan, & Surappa, M. K. (2008). Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Materials Science and Engineering-A, 480(1–2), 117–124. doi:10.1016/j.msea.2007.06.068
  • Suresha, S., & Sridhara, B. K. (2012). Friction characteristics of aluminium silicon carbide graphite hybrid composites. Materials Design, 34, 576–583. doi:10.1016/j.matdes.2011.05.010
  • Taya, M., & Arsenault, R. J. (1989). Metal matrix composite thermo mechanical behavior. Headington Hill Hall, Oxford: Pergamon Press PLC.
  • Tee, K. L., Lu, L., & Lai, M. O. (2000). Wear performance of in-situ Al–TiB2 composite. Wear, 240, 59–64. doi:10.1016/S0043-1648(00)00337-9
  • Uvaraja, V. C., & Natarajan, N. (2012). Optimization of friction and wear behaviour in the hybrid metal matrix composites using Taguchi technique. Journal of Minerals and Materials Characterization and Engineering, 11, 757–768. doi:10.4236/jmmce.2012.118063
  • Uvaraja, V. C, & Natarajan, N. (2012). Processing of stir cast Al-7075 hybrid metal matrix composites and their characterization. International Review of Mechanical Engineering, 6(4), 724–729.
  • Vamsi Krishna, M., & Xavior, A. M. (2014). An investigation on the mechanical properties of hybrid metal matrix composites. In 12th Global congress on manufacturing and management (GCMM 214), Vellore, India, Procedia Engineering, 97, 918–924.
  • Wide Open Eats. (2019). Home-cooking. www.wideopeneats.com/corn-cobs-use/
  • Wilson, S., & Alpas, A. T. (1996). Effect of temperature on the sliding wear performance of Al alloys and A1 matrix composites. Wear, 196, 270–278. doi:10.1016/0043-1648(96)06923-2
  • Xavier, I. F., & Suresh, P. (2016). Wear behaviour of aluminium metal matrix composite prepared from industrial waste. Scientific World Journal, 2016, 1–8. doi:10.1155/2016/6538345
  • Yar, A. A., Montazerianb, M., Abdizadeh, H., & Baharvandi, H. R. (2009). Microstructure and mechanical properties of aluminium alloy matrix composite reinforced with nano-particle MgO. Journal of Alloys and Compounds, 484, 400–404. doi:10.1016/j.jallcom.2009.04.117
  • Zakaria, H. M. (2014). Microstructural and corrosion behaviour of Al/SiC metal matrix composites. Ain Shams Engineering Journal, 5, 831–838. doi:10.1016/j.asej.2014.03.003