898
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Finite element mesh improvement using an a priori local p-refinement for stress analysis of underground excavations

& | (Reviewing editor)
Article: 1769287 | Received 18 Apr 2019, Accepted 04 May 2020, Published online: 27 May 2020

References

  • Brady, B. H. G., & Brown, E. T. (2006). Rock mechanics for underground mining. SpringerNature.
  • Brown, E. T. (1987). Analytical and computational methods in engineering rock mechanics. Allen and Unwin.
  • Garcia Rosero, D. F. (2011) Finite element mesh optimization using the partial p-adaptive method for stress analysis of underground excavations, M.A.Sc. Thesis, Department BCEE, Concordia University
  • Gupta, A. K. (1978). A finite element for transition from a fine to a coarse grid. International Journal for Numerical Methods in Engineering, 12(1), 35–24. https://doi.org10.1002/nme.1620120104
  • Hazegh, M., & Zsaki, A. M. (2013). A framework for automatic modeling of underground excavations and optimizing 3D boundary and finite element meshes derived from them - framework. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6), 641–660. https://doi.org10.1002/nag.1130
  • Hoek, E. (2007). Practical rock engineering. Rocscience Inc.
  • Huang, F., & Xie, X. (2010). A modified nonconforming 5-node quadrilateral transition finite element. Advances in Applied Mathematics and Mechanics, 2(6), 784–797. https://doi.org10.4208/aamm.09-m09110
  • Ikhenazen, G., Saidani, M., & Kilardj, M. (2019). Optimization of a finite element mesh for plates subjected to in-plane patch loading. Journal of Mechanical Science and Technology, 33(3), 1185–1193. https://doi.org10.1007/s12206-019-0218-0
  • Jackson, R., Gorski, B., & Gyenge, M. (1995). Geotechnical properties of rock: A data base of physical properties of Canadian rock including both intact and residual strength. Canada Communication Group Publishing.
  • Kardani, M., Nazem, M., Sheng, D., & Carter, J. P. (2013). Large deformation analysis of geomechanics problems by a combined RH-adaptive finite element method. Computers and Geotechnics, 49(49),90–99. https://doi.org10.1016/j.compgeo.2012.09.013
  • Martin, C. D., & Kozak, E. T. (1992) Flow measurements in the excavation disturbed zone of Room 209. Rock characterization: ISRM Symposium, Eurock ’92, Chester, UK., 402–407.
  • Ramamurthy, T. (2007). Engineering in rocks for slopes, foundations and tunnels. 2nd Printing. PHI.
  • rocscience inc. (2014, May 9) Phase2 – Finite element analysis for excavations and slopes. http://www.rocscience.com/products/3/Phase2
  • Sapre, M. S., Kulkarni, A. J., & Shinde, S. S. (2019) Finite element mesh smoothing using cohort intelligence. In: A. Kulkarni, S. Satapathy, T. Kang, & A. Kashan (eds) Proceedings of the 2nd International Conference on Data Engineering and Communication Technology. Advances in Intelligent Systems and Computing, vol 828. Springer, Singapore.
  • Yu, C. Y., Liu, F., & Xu, Y. (2018). An h-adaptive numerical manifold method for solid mechanics problems. Science China Technological Sciences, 61(6), 923–933. https://doi.org10.1007/s11431-017-9143-9
  • Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method, its basis and fundamentals (6th ed.). Elsevier.
  • Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, 24(1), 337–357. https://doi.org10.1002/nme.1620240206
  • Zsaki, A. M., (2003) Innovative techniques in large-scale stress analysis of underground excavations. Ph.D. Thesis, Department of Civil Engineering, University of Toronto.
  • Zsaki, A. M. (2010). Optimized mesh generation for finite element analysis of underground excavations in rocks masses traversed by joints. International Journal of Rock Mechanics and Mining Sciences, 47(4), 533–702.
  • Zsaki, A. M. (2018). sim|FEM: A finite element analysis research code for excavation analysis and design. Concordia University.
  • Zsaki, A. M., & Curran, J. H. (2005a). A continuum mechanics based framework for boundary and finite element mesh optimization in two dimensions for application in excavation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 29(4), 369–393. https://doi.org10.1002/nag.418
  • Zsaki, A. M., & Curran, J. H. (2005b). A continuum mechanics based framework for optimizing boundary and finite element meshes associated with underground excavations – Framework. International Journal for Numerical and Analytical Methods in Geomechanics, 29(13), 1271–1298. https://doi.org10.1002/nag.459
  • Zsaki, A. M., & Curran, J. H. (2005c). A continuum mechanics based framework for optimizing boundary and finite element meshes associated with underground excavations - Accuracy, efficiency and applications. International Journal for Numerical and Analytical Methods in Geomechanics, 29(13), 1299–1315. https://doi.org10.1002/nag.460