960
Views
1
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Defluoridation of groundwater from Siloam Village, Limpopo Province, South Africa, using vermiculite modified with hexadecyltrimethylammonium

, ORCID Icon, & | (Reviewing editor)
Article: 1795050 | Received 19 Mar 2020, Accepted 05 Jul 2020, Published online: 20 Jul 2020

References

  • Armienta, M. A., & Segovia, N. (2008). Arsenic and fluoride in the groundwater in Mexico. Environmental Geochemistry and Health, 30(4), 345–10. https://doi.org/10.1007/s10653-008-9167-8
  • Aroke, U. O., El-Nafaty, U. A., & Osha, O. A. (2014). Removal of oxyanion contaminants from wastewater by sorption onto HDTMA-Br surface modified organo-kaolinite clay. International Journal of Emerging Technology and Advanced Engineering, 4(1), 475–484.
  • Blignaut, J., & Van Heerden, J. (2009). The impact of water scarcity on economic development initiatives. Water SA, 35(4), 415–420. https://doi.org/10.4314/wsa.v35i4.76800
  • Coetzee, P. P., Coetzee, L. L., Puka, R., & Mubenga, S. (2003). Characterisation of selected South African clays for defluoridation of natural water. Water SA, 29(3), 331–338. http://doi.org/10.4314/wsa.v29i3.4935
  • Cox, C. R. (1964). Operation and control of water treatment process. World health organization.
  • Czajka-Jakubowska, A. (2009). Effect of the interaction of amelogenin and enamel crystal in clinical and experimental fluorosis. Wydawnictwo Naukowe Uniwersytet Medyczny im. Karola (In Polish).
  • Das, N., Pattanaik, P., & Rita, D. (2005). Defluoridation of drinking water using activated titanium rich bauxite. Journal of Colloid and Interface Science, 292(1), 1–10. https://doi.org/10.1016/j.jcis.2005.06.045
  • Department of Water Affairs and Forestry (DWAF). (1996). South African water quality guidelines (Vol. 8). Department of water affairs and forestry. field guide (2nd use).
  • Dizadji, N., Rashtchi, M., Dehpouri, S., & Nouri, N. (2013). Experimental investigation of adsorption of copper from aqueous solution using vermiculite and clinoptilolite. International Journal of Environmental Research, 7(4), 887–894. https://doi.org/10.22059/IJER.2013.670
  • Durowoju, O. S., Odiyo, J. O., & Ekosse, G. E. (2015). Hydro-geochemical setting of geothermal springs in Limpopo province, South Africa – A review. Research Journal of Chemistry and Environment, 19(1), 77–88.
  • El Haddad, M., Mamouni, R., Saffaj, N., & Lazar, S. (2012). Removal of a cationic dye-basic Red 12- from aqueous solution by adsorption onto animal bone meal. Journal of the Association of Arab Universities for Basic and Applied Sciences, 12(1), 48–54. https://doi.org/10.1016/j.jaubas.2012.04.003
  • França, S. C. A., Arruda, G. M., & Ugarte, J. F. O. (2005). Vermiculite utilization on the treatment of water contaminated with organic compounds. Enpromer- 2005, 2nd Mercosur Congress on Chemical Engineering.
  • Gogoi, P. K., & Baruah, R. (2008). Fluoride removal from water: Adsorption on acid activated kaolinite clay. Indian Journal of Chemical Technology, 15(5), 500–503.
  • Hanumantharao, Y., Kishore, M., & Ravindhranath, K. (2011). Preparation and development of adsorbent carbon from acacia farnesiana for defluoridation. International Journal of Plant, Animal and Environmental Sciences, 1(3), 209–223.
  • Hongo, T., Yoshino, S., Yamazaki, A., Yamasaki, A., & Satokawa, S. (2012). Mechanical treatment of vermiculite in vibration milling and its effects on lead (II) adsorption ability. Applied Clay Science, 70, 74–78. https://doi.org/10.1016/j.clay.2012.09.016
  • Hu, D., Wang, P., Li, J., & Wang, L. (2014). Functionalization of microcrystalline cellulose with N, N-dimethyldodecylamine for the removal of congo red dye from an aqueous solution. Bioresources, 9(4), 5951–5962. https://doi.org/10.15376/biores.9.4.5951-5962
  • Ibrahim, M., Asimrasheed, M., Sumalatha, M., & Prabhakar, P. (2011). Effects of fluoride contents in ground water: A review. International Journal of Pharmaceutical Applications, 2(2), 128–134.
  • Ishikawa, S., Matsumura, Y., Katoh-Kubo, K., & Tsuchido, T. (2002). Antibacterial activity of surfactants against Escherichia coli cells as influenced by carbon source and anaerobiosis. Journal of Applied Microbiology, 93(2), 302–309. https://doi.org/10.1046/j.1365-2672.2002.01690.x
  • Kamble, S. P., Japtap, S., Labhsetwar, N. K., Thakare, D., Godfrey, S., Devotta, S., & Rayau, S. S. (2007). Defluoridation of drinking water using chitin, chitosan and lanthanum modified chitosan. Chemical Engineering Journal, 129(1–3), 173–180. https://doi.org/10.1016/j.cej.2006.10.032
  • Kanaujia, S., Singh, B., & Singh, S. (2015). Removal of fluoride from groundwater by carbonised punica granatum carbon (“CPGC”) Bio-Adsorbent. Journal of Geoscience and Environment Protection, 3(4), 1–9.
  • Li, Z., Willms, C. A., & Kniolak, K. (2003). Removal of anionic contaminants using surfactants-modified palygorskite and sepiolite. Clay and Clay Minerals, 51(4), 445–451. https://doi.org/10.1346/CCMN.2003.0510411
  • Louw, A. J., & Chikte, U. M. E. (1997). Fluoride and fluorosis: The status of research in South Africa. 2nd International workshop on fluorosis prevention and defluoridation of water. In Dahi E, Nielsen JM, (eds), Proceedings of the 2nd International Workshop on Fluorosis and Defluoridation of Water; 1997 Nov 19-25, Nazareth, Ethiopia. International Society for Fluoride Research, 15–22. Dunedin, New Zealand. http://www.defluoride.net/2ndproceedings/15-22.pdf
  • McCaffrey, L. P., & Willis, J. P. (2001). Distribution of fluoride rich groundwater in eastern and Mogwase region of the North West provinces, WRC Report no 526/1/01.
  • Motawie, A. M., Madany, M. M., El-Dakrory, A. Z., Osman, H. M., Ismail, E. A., Badr, M. M., El-Komy, D. A., & Abulyazied, D. E. (2014). Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers. Egyptian Journal of Petroleum, 23(3), 331–338. https://doi.org/10.1016/j.ejpe.2014.08.009
  • Ncube, E. J., & Schutte, C. F. (2005). Relation of dental fluorosis to groundwater fluoride in South Africa. 4th International Workshop on Fluorosis Prevention and Defluoridation of Water, 23–32.
  • Nouria, N., Meriem, B., Mustapha, B., Touhami, M., Driss, L., Yahia, H., Antonis, A., & Zorpas Mejdi, J. (2019). Removal of fluoride from groundwater using natural clay (kaolinite): Optimization of adsorption conditions. Comptes Rendus Chimie, 22(2–3), 105–112. https://doi.org/doi.10.1016/j.crci.2018.09.010
  • Odiyo, J. O., & Makungo, R. (2012). Fluoride concentrations in groundwater and impact on human health in Siloam Village, Limpopo Province, South Africa. Water SA, 38(5), 731–736. https://doi.org/10.4314/wsa.v38i5.12
  • Ohio EPA. (2012). Fluoride in Ohio’s groundwater, Ohio Environmental Protection Agency.
  • Oladoja, N. A., & Helmreich, B. (2014). Batch defluoridation appraisal of aluminium oxide infused diatomaceous earth. Chemical Engineering Journal, 258, 51–61. https://doi.org/10.1016/j.cej.2014.07.070
  • Ologundudu, T. O., Odiyo, J. O., & Ekosse, G. E. (2016). Fluoride sorption efficiency of vermiculite functionalised with cationic surfactant: Isotherm and kinetics. Applied Sciences, 6(10), 277. https://doi.org/10.3390/app6100277
  • Onyango, M. S., Masukume, M., Ochieng, A., & Otieno, F. (2010). Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Water SA, 36(5), 655–662. https://doi.org/10.4314/wsa.v36i5.61999
  • Rango, T., Kravchenko, J., Atlaw, B., McCornick, P. G., Jeuland, M., Brittany, M., & Vengosh, A. (2012). Groundwater quality and its health impacts: An assessment of dental fluorosis in rural inhabitants of the main Ethiopian rift. Environment International, 43, 37–47. https://doi.org/10.1016/j.envint.2012.03.002
  • Rani, B., Maheshwari, R., Chauhan, A. K., & Bhaskar, N. S. (2012). Defluoridation of contaminated water employing brick powder as an adsorbent. International Journal of Science and Nature, 3(1), 78–82.
  • Rayappan, S., Jeyaprabha, B., & Prakash, P. (2014). A study on removal of fluoride ions from drinking water using a low- cost natural adsorbent. International Journal of Engineering Research & Technology, 3(4), 1340–1346.
  • Saksena, D. N., & Narwaria, Y. S. (2012). Incidence of fluoride in groundwater and its potential health effects in ten villages of Karera block in Shivpuri district, Madhya Pradesh, India. International Journal of Environmental Sciences, 3(3), 1141–1149. doi:10.6088/ijes.2012030133021
  • Salim, M. M., Malek, N. A. N. N., Ramli, N. I., Hanim, S. A. M., & Hamdan, S. (2014). Antibacterial activity of CTAB-modified zeolite NaY with different CTAB loading. Malaysian Journal of Fundamental and Applied Sciences, 10(3), 19–33. https://doi.org/10.11113/mjfas.v10n3.267
  • Sharma, B. S., Agrawal, J., & Gupta, K. A. (2011). Emerging challenge: Fluoride contamination in groundwater in Agra district, Uttar Pradesh. Asian Journal of Experimental Biological Sciences, 2(1), 131–134.
  • Shichi, T., & Takagi, K. (2000). Clay mineral as a photochemical reaction field. Journal of Photochem. Photobiology C: Photochemistry Reviews, 1(2), 113–130. https://doi.org/10.1016/S1389-5567(00)00008-3
  • Smith, K. S. (1999). Reviews in economic geology volume 6A and 6B. Environmental geochemistry of mineral deposits, Chapter 7 metal sorption on mineral surfaces: An overview with examples relating to mineral deposits. Society of economic geologist Inc. 9(SEG).
  • Tewari, A., & Dubey, A. (2009). Defluoridation of drinking water. Efficacy and need. Journal of Chemical and Pharmaceutical Research, 1(1), 31–37.
  • Vhahangwele, M., Gitari, W. M., & Ngulube, T. (2014). Defluoridation of drinking water using Al3+-modified bentonite clay: Optimization of fluoride adsorption conditions. Toxicological and Environmental Chemistry, 96(9), 1294–1309. https://doi.org/10.1080/02772248.2014.977289
  • Vieira, D. B., & Carmona-Ribeiro, A. M. (2006). Cationic lipids and surfactants as antifungal agents: Mode of action. Journal of Antimicrobial Chemotherapy, 58(4), 760–767. https://doi.org/10.1093/jac/dkl312
  • World Health Organisation. (2004). Fluoride in drinking-water, Background document for development of WHO Guidelines for drinking-water quality.