1,251
Views
5
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

A Strain model for uPVC tube-confined concrete

ORCID Icon | (Reviewing editor)
Article: 1868695 | Received 29 Sep 2020, Accepted 21 Dec 2020, Published online: 25 Jan 2021

References

  • Abdulla, N. A. (2014). concrete filled thermoplastic tube under compression first international engineering conference (IEC2014). p(60–27)
  • Abdulla, N. A. (2017). Concrete filled PVC tube: A review. Construction and Building Materials, 156, 321–329. https://doi.org/10.1016/j.conbuildmat.2017.08.156
  • Abdulla, N. A. (2019). Influence of plastic pour-in form on the mechanical behavior of concrete. Structures, 19, 193–202. https://doi.org/10.1016/j.istruc.2019.01.007
  • Abdulla, N. A. (2020a). Concrete encased with engineering plastics. Journal of Civil Engineering and Construction, 9(1), 31–41. https://doi.org/10.32732/jcec.2020.9.1.31
  • Abdulla, N. A. (2020b). Mechanical behavior of slender composite columns under axial compression load. KSCE Journal of Civil Engineering, 24(1), 208–218. https://doi.org/10.1007/s12205-020-0669-y
  • Abdulla, N. A. (2020c). Concrete with an outer plastic protective shell. SN Applied Sciences, 2, 1093. https://doi.org/10.1007/s42452-020-2901–2
  • Abdulla, N. A. (2020d). The Behavior of concrete-filled Plastic Tube Specimens under Axial Load, Jordan. Journal of Civil Engineering, 14(1), 69–81
  • Abdulla, N. A. (2020e). Using the Artificial Neural Network to Predict the Axial Strength and Strain of Concrete-filled Plastic Tube. Journal of Soft Computing in Civil Engineering. https://doi.org/10.22115/scce.2020.225161.1198 27 doi:10.1016/j.istruc.2020.07.061
  • Abdulla, N. A. (2020f). Axial strength of short concrete-filled plastic tubes. Structures, 27, 1786–1800. https://doi.org/10.1016/j.istruc.2020.07.061
  • ACI 440-2R (ACI2008 American Concrete Institute (ACI). (2008). “Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures.”. MI. 440.2R-08.
  • Al-Tersawy, S. H., Hodhod, O. A., & Hefnawy, A. A. (2007). Reliability and code calibration of RC short columns confined with CFRP wraps. In: Proc. 8th int. symp. on fiber-reinforced polymer reinforcement for concrete structures. Patras, Greece: Univ. of Patras; 2007
  • Askari, S. M., Khaloo, A., Borhani, M. H., & Tale Masoule, M. S. (2020). Performance of polypropylene fiber reinforced concrete-filled UPVC tube columns under axial compression. Construction and Building Materials, P(1–16).
  • Azeez, A. A., Jamaluddin, N., Rahman, N. A., Hassen, D. R., & Attiyah, A. N. (2018). Experimental and analytical study of PVC confined concrete cylinders. Journal of Engineering Applied Sciences, 13(8), 2145–2151.
  • Babu, B., & Paulose, H. (2019). Behavior of Compound Concrete Filled Reinforced PVC Tubes Under Compression. International Research Journal of Engineering and Technology(IRJET)e- 2395–0056, 06(04).
  • Benzaid, R., Mesbah, H., & Chikh, N. (2010). FRP-confined concrete cylinders: Axial compression experiments and strength model. J ReinfPlas Compos, 29(16), 2469–2488.
  • Binici, B. (2008). Design of FRPs in circular bridge column retrofits for ductility enhancement. Eng Struct, 30(3), 766–776. https://doi.org/10.1016/j.engstruct.2007.05.012
  • Bu, S., Yu, F., Feng, C., Liu, Q., song, J., & Fang, Y. (2020). Local compressive behavior of joint core reinforced with ring beam for connection of polyvinyl chloride fiber‐reinforced polymer confined concrete column and reinforced concrete beam. Structural Concrete., 21, 1523–1543. https://doi.org/10.1002/suco.201900312
  • Chen, Z., Liang, Y., & Zhao, X. (2020). Investigation on Hysteretic Behavior of Embedded PVC Pipe Confined Reinforced High Strength Concrete Columns. Materials, 13(3), 737. https://doi.org/10.3390/ma13030737
  • Ciupala, M. A., Pilakoutas, K., & Mortazavi, A. A. Effectiveness of FRP composites in confined concrete. In: Proc. 8th int. symp. on fiber reinforced polymer reinforcement for concrete structures. Patras, Greece Univ. of Patras; 2007.
  • Fakharifar, M., & Chen, G. (2016). Compressive behavior of FRP-confined concrete-filled PVC tubular columns. Composite Structures, 141, p 1–19. https://doi.org/10.1016/j.compstruct.2016.01.004
  • Fakharifar, M., Chen, G., Lin, Z., & Woolsey, Z. (2014). Behavior and strength of passively confined concrete-filled tubes. In: The 10th US national conference on earthquake engineering: July. Anchorage, AK..
  • Fanaradelli, T., & Rousakis, T. (2020). Assessment of analytical stress and strain at peak and ultimate conditions for fiber-reinforcement polymer confined reinforced concrete columns of rectangular sections under axial cyclic loading. Structural Concrete, 1–14.
  • Fardis, M. N., & Khalili, H. (1982). FRP-encased concrete as a structural material. Mag Concr Res, 34(122), 191–202. https://doi.org/10.1680/macr.1982.34.121.191
  • Gao, C., Huang, L., & Yan, L. (2019). Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement. Composites Part B, 162, 178–197. https://doi.org/10.1016/j.compositesb.2018.10.102
  • Hong, Y., Lin, J., & Chen, W. (2019, February). Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method. International Journal of Heat and Mass Transfer, Volume 129, 449–459. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.037
  • Ilki, A., Kumbasar, N., & Koc, V. (2002). Strength and deformability of low strength concrete confined by carbon fibre composite sheets. In: Proc. 15th eng. mech. Conference. New York:Columbia Univ.; 2002
  • Ilki, A., Kumbasar, N., & Koc, V. (2004). Low strength concrete members externally confined with FRP sheets. Struct Eng Mech, 18(2), 167–194. https://doi.org/10.12989/sem.2004.18.2.167
  • Jiang, S., Dai, T., Fu, D., Wu, Z., & Li, N. (2012). Experimental study on concrete columns confined by BFRP-PVC tubes under uniaxial loading. Journal of Shenyang Jianzhu University (Natural Science), 28(1), 23–29.
  • Jiang, T., & Teng, J. G. (2007). Analysis-oriented stress-strain models for FRP-confined concrete. ASCE J Eng Struct, 29(11), 2968–2986. https://doi.org/10.1016/j.engstruct.2007.01.010
  • Jiequn, L., Tian, Y., Chen, J. G., & Zhu, C. Y. (2019). Experimental Study on CFRP-PVC Confined RAC under Axial Compression. Solid State Phenomena, 294, pp 143–149
  • Kurtoglu, A. E., Hussein, A. K., & Gulsan, M. E. (2018). Mechanical investigation and durability of HDPE-confined SCC columns exposed to severe environment. KSCE J Civil Eng, 22, 5046. https://doi.org/10.1007/s12205-017-1533-6
  • Lam, L., & Teng, J. G. (2003a). Design-oriented stress-strain model for FRP-confined concrete. Construction and Building Materials, 17(6–7), 471–489. https://doi.org/10.1016/S0950-0618(03)00045–X
  • Lam, L., & Teng, J. G. (2003b). “Design-oriented stress-strain model for FRP-confined concrete in rectangular columns.”. J. Reinf. Plast. Compos., 22(13), 1149–1186. https://doi.org/10.1177/0731684403035429
  • Mandal, S., Hoskin, A., & Fam, A. (2005). Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets. ACI Struct J, 102(3), 383–392.
  • Marzouck, M., & Sennah, K. (2002), “concrete-filled PVC tubes as compression members: Composite Materials in Concrete Construction”, Proceedings of the international congress “challenges of concrete construction, 31–38.
  • Michel Murillo, A., Tutikian, B. F., Ortolan, V., Marcos, L. S., & Oliveira, C. H. (2019). Fire resistance performance of concrete-PVC panels with polyvinyl chloride (PVC) stay in place (SIP) formwork. Journal of Materials Research and Technology, 8(Issue 5), 4094–4107.
  • Miyauchi, K. and et al. (1997) “Estimation of strengthening effects with carbon fiber sheet for concrete column”. Proceedings of the third international symposium (FRPRCS-3) on Non-Metallic (FRP) Reinforcement for concrete structures, Sapporo, Japan, pp. 217–224
  • Miyauchi, K., Inoue, S., Kuroda, T., & Kobayashi, A. (1999). Strengthening effects with carbon fiber sheet for concrete column. Japan Concr. Inst.
  • Saadatmanesh, H., Ehsani, M. R., & Li, M. W. (1994). Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Struct J, 91(4), 434–447.
  • Saadoon, A. S. Experimental and Theoretical Investigation of PVC-Concrete Composite Columns. Ph.D. Thesis 2010: 23–134
  • Saafi, H., & Li, T. Z. (1999). Behavior of concrete columns confined with fiber-reinforced polymer tubes. ACI Material Journal, 96(4), 500–509.
  • Samaan, M., Mirmiran, A., & Shaway, M. (1998). Model of concrete confined by fiber composites. Journal of Structure Engineering, ASCE, 124(9), 1025–1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  • Shehata, I. A. E. M., Carneiro, L. A. V., & Shehata, L. C. D. (2002). Strength of short concrete columns confined with CFRP sheets. Mater Struct, 35, 50–58.
  • Shiyang, L., Huang, X., Shuaishuai, W., Tian, J., & Zhang, W. (2018). Bearing capacity of stabilized soil with expansive component confined by polyvinyl chloride pipe. Construction and Building Materials, 175, 307–320. https://doi.org/10.1016/j.conbuildmat.2018.04.188
  • Song, H. W., Lee, C. H., & Ann, K. Y. (2008). Factors influencing chloride transport in concrete structures exposed to marine environments. Cem. Concr. Compos, 30(2), 113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005
  • Toutanji, H. A. (1999). Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheet. ACI Structural Journal, 96(3), 397–405.
  • Uddin, N., & John, D. (2008). Purdue; and Uday Vaidya, Feasibility of Thermoplastic Composite Jackets for Bridge Impact Protection. Journal of Aerospace Engineering, 21, 259–265. https://doi.org/10.1061/(ASCE)0893-1321(2008)21:4(259)
  • Wang, J. Y., & Yang, Q. (2012). Investigation on compressive behaviors of thermoplastic pipe confined concrete. Construct Build Mater, 2012(p35), 578–585
  • Woldemariam, A. M., Oyawa, W. O., & Nyomboi, T. (2019). Structural performance of UPVC confined concrete equivalent cylinders under axial compression loads. Buildings, 2019(P), 1–25.
  • Woldemariam, A. M., Oyawa, W. O., & Nyomboi, T. (2020). Experimental studies on the behavior of concrete-filled uPVC tubular columns under axial compression loads. Cogent Engineering, 7, 1768649. https://doi.org/10.1080/23311916.2020.1768649
  • Wu, H., Wang, Y., Yu, L., & Li, X. (2009). Experimental and computational studies on high strength concrete circular columns confined by aramid fiber-reinforced polymer sheets. ASCE J Compos Constr, 13(2), 125–134. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(125)
  • Yan, Z., & Pantelides, C. P. Design-oriented model for concrete columns confined with bonded FRP jackets or post-tensioned FRP shells. In Proc. 8th int. symp. on fiber-reinforced polymer reinforcement for concrete structures. Patras, Greece: Univ. of Patras; 2007.
  • Yazici, V., & Muhammad, N. S. (2012). Hadi, Normalized Confinement Stiffness Approach for Modeling FRP-Confined Concrete, J. Compos. Constr., 16, 520–528. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000283
  • Youssef, M. N., Feng, M. Q., & Mosallam, A. S. (2007). Stress-strain model for concrete confined by FRP composites. Compos Part B: Eng, 38(5–6), 614–628. https://doi.org/10.1016/j.compositesb.2006.07.020