2,506
Views
6
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Electrodeposition of Cu2O nanostructures with improved semiconductor properties

, , , , , , & | (Reviewing editor) show all
Article: 1875534 | Received 30 Aug 2020, Accepted 24 Dec 2020, Published online: 28 Jan 2021

References

  • Ait, A., Atourki, L., Labchir, N., Abouabassi, K., Ouafi, M., Mouhib, H., Ihlal, A., Elfanaoui, A., Benmokhtar, S., & Bouabid, K. (2020). Structural and optical properties of electrodeposited Cu2O thin films. Mater. Today, 22(1), 89–10. https://doi.org/10.1016/j.matpr.2019.08.100
  • Allam, N., & Grimes, C. (2011). Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes. Mater. Lett, 65(12), 1949–1955. https://doi.org/10.1016/j.matlet.2011.03.105
  • Alvarado, J. (2017). Analysis of the perovskite structure LaxSr1-xCryMn1-yO3-δ with potential application as an anode for solid oxide fuel cells. Bol. Soc. Esp. Ceram, 56(2), 73–82. https://doi.org/10.1016/j.bsecv.2016.09.003
  • Anastasiadou, D., Schellekens, M., de Heer, M., Verma, S., & Negro, E. (2019). Electrodeposited Cu2 O films on gas diffusion layers for selective CO2 electroreduction to ethylene in an alkaline flow electrolyzer. ChemElectroChem, 6(15), 3928–3932. https://doi.org/10.1002/celc.201900971
  • Anower, M., Al-Gaashani, R., Hamoudi, H., Al Marri, M., Hussein, I., Belaidi, A., Merzougui, B., Alharbi, F., & Tabet, N. (2017). Controlled growth of Cu2O thin films by electrodeposition approach. Mat. Sci. Semicon. Proc, 63(1), 203–211. https://doi.org/10.1016/j.mssp.2017.02.012
  • Bao, M., Wang, D., Liu, S., Kuang, L., Sun, J., Wang, F., & Wen, Y. (2012). Electrodeposition and electrocatalytic activity of Cu2O film on stainless steel substrate. Appl. Surf. Sci, 258(20), 8008–8014. https://doi.org/10.1016/j.apsusc.2012.04.156
  • Das, C., Singh, A., Heo, Y., Aggarwal, G., Maurya, S., Seidel, J., & Kavaipatti, B. (2018). Effect of grain boundary cross-section on the performance of electrodeposited Cu 2 O photocathodes. The Journal of Physical Chemistry C, 122(3), 1466–1476. https://doi.org/10.1021/acs.jpcc.7b10103
  • Gattinoni, C., Michaelides, A. (2015). Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep, 70(3), 424-447. https://doi.org/10.1016/j.surfrep.2015.07.001
  • Gu, Y., Su, X., Du, Y., & Wang, C. (2010). Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application. Appl. Surf. Sci, 256(20), 5862–5866. https://doi.org/10.1016/j.apsusc.2010.03.065
  • Kar, P., El-tahlawy, M., & Zhang, Y. (2017). Anodic copper oxide nanowire and nanopore arrays with mixed phase content: Synthesis, characterization and optical limiting response. J. Phys. Commun, 1(4), 1–9. https://doi.org/10.1088/2399/6528/aa93a4
  • Kim, T., Oh, H., Ryu, H., & Lee, W. (2014). The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications. J. Alloys Compd, 612(1), 74–79. https://doi.org/10.1016/j.jallcom.2014.05.158.
  • Lara-juárez, D., García-contreras, R., & Concepción, M. (2018). Sutures functionalised with nanomaterials for oral surgery. A systematic review. Rev. Esp. Cir. Oral Maxilofac, 40(1), 33–40. https://doi.org/10.1016/j.maxilo.2017.01.001
  • Lee, Y., Leu, I., Chang, S., Liao, C., & Fung, K. (2004). The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium. Electrochimica Acta, 50(2-3), 4553–4559. https://doi.org/10.1016/j.electacta.2003.12.072
  • Liu, R., Oba, F., Bohannan, E., Ernst, F., & Switzer, J. (2003). Shape control in epitaxial electrodeposition: Cu 2 O nanocubes on InP(001). Chem. Mater, 15(26), 4882–4885. https://doi.org/10.1021/cm034807c
  • Liu, Y., Liu, Y., Mu, R., Yang, H., Shao, C., Zhang, J., Lu, Y., Shen, D., & Fan, X. (2016). The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. Sci. Technol, 20(1), 44–49. https://doi.org/10.1088/0268-1242/20/1/007
  • Messaoudi, O., Ben Assaker, I., Gannouni, M., Souissi, A., Makhlouf, H., Bardaoui, A., & Chtourou, R. (2016). Structural, morphological and electrical characteristics of electrodeposited Cu2O Effect of deposition time. Appl. Surf. Sci. 366(1) 383–388. https://doi.org/10.1016/j.apsusc.2016.01.035.
  • Meyer, B., Polity, A., Reppin, D., Becker, M., Hering, P., Klar, P. J., Sander, T. H., Reindl, C., Benz, J., Eickhoff, M., Heiliger, C., Heinemann, M., Blasing, J., Krost, A., Shokovets, S., Muller, C., & Ronning, C. (2012). Binary copper oxide semiconductors: From materials towards devices. Phys. Status. Solid. B, 249(8), 1487–1509. https://doi.org/10.1002/pssb.201248128
  • Musselman, K., Wisnet, A., Iza, D., Hesse, H., Scheu, C., MacManus-Driscoll, J., & Schmidt-Mende, L. (2017). Strong efficiency improvements in ultra‐low‐cost inorganic nanowire solar cells. Adv. Mater, 22(35), 254–258. https://doi.org/10.1002/adma.201001455
  • Mutalib, A., Losic, D., & Voelcker, N. H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci, 58(5), 636–704. https://doi.org/10.1016/j.pmatsci.2013.01.002
  • Nian, J., Tsai, C., Lin, P., & Teng, H. (2009). Elucidating the conductivity-type transition mechanism of p-type Cu[sub 2]O films from electrodeposition. J. Electrochem. Soc, 156(7), H567–H573. https://doi.org/10.1149/1.3125800
  • Niveditha, C., Fatima, M., & Sindhu, S. (2016). Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. J. Electrochem. Soc, 163(6), 426–433. https://doi.org/10.1149/2.0971606jes
  • Osherov, A., Zhu, C., & Panzer, M. (2013). Role of solution chemistry in determining the morphology and photoconductivity of electrodeposited cuprous oxide films. Chem. Mater, 25(5), 692–698. https://doi.org/10.1021/cm303287g
  • Oyarzún, D., Broens, M., Linarez, O., López, M., Islas, R., & Arratia-Perez, R. (2018). Simple and rapid one-step electrochemical synthesis of nanogranular Cu2O films. ChemistrySelect, 3(30), 8610–8614. https://doi.org/10.1002/slct.201703128
  • Oyarzún, D., López, M., Ramos, W., Pérez, O. L., Sánchez, J., Pizarro, G., Acosta, G., Flores, M., & Arratia-Perez, R. (2017). Nanostructuring of anodic copper oxides in fluoride-containing ethylene glycol media. J. Electroanal. Chem, 807(1), 181–186. https://doi.org/10.1016/j.jelechem.2017.11.047
  • Oyarzún, D., Pizarro, G., Asenjo, A., Tello, A., Martin-Trasanco, R., Zúñiga, C., Sánchez, J., & Arratia-Pérez, R. (2017). Synthesis and morphological characterization of nanocomposite based on anodic tio2 nanotubes and poly(n-maleoyl glycine-co-acrylic acid). J. Chil. Chem. Soc, 62(3), 3634–3636. https://dx.doi.org/10.4067/s0717-97072017000303634
  • Oyarzún, D., Tello, A., Pizarro, G., Martin-Transaco, R., Zúñiga, C., Perez-Donoso, J., & Arratia-Perez, R. (2017). Electrochemical synthesis, optical properties and morphological characterization of ZnO/Poly(N-PhMI-co-HEMA) nanocomposite. J. Electroanal. Chem, 799(1), 358–362. https://doi.org/10.1016/j.jelechem.2017.06.039
  • Paracchino, A., Brauer, J., Moser, J., Thimsen, E., & Graetzel, M. (2012). Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by Photoelectrochemistry and Ultrafast Spectroscopy. The Journal of Physical Chemistry C, 116(3), 7341–7350. https://doi.org/10.1021/jp301176y
  • Pizarro, G., Marambio, O., Jeria-Orell, M., Oyarzún, D., Rivas, B., & Habicher, W. (2009). Synthesis and characterization of hydrophilic copolymers of maleimide derivatives with 2-hydroxyethyl methacrylate: Electrochemical and thermal behavior. Polym. Int, 58(10), 1160–1166. https://doi.org/10.1002/pi.2644
  • Prieto, A., Martín-González, M., Keyani, J., Gronsky, R., Sands, T., & Stacy, A. (2003). The electrodeposition of high-density, ordered arrays of Bi1xSbxNanowires. J. Am. Chem. Soc, 125(9), 2388–2389. https://doi.org/10.1021/ja029394f
  • Rahal, H., Kihal, R., Affoune, A., & Rahal, S. (2018). Electrodeposition and characterization of Cu2O thin films using sodium thiosulfate as an additive for photovoltaic solar cells. J. Chem. Eng, 26(2), 421–427. https://doi.org/10.1016/j.cjche.2017.06.023
  • Rai, B. (1988). Cu2O solar cells: A review. Sol. Cells, 25(3), 265–272. https://doi.org/10.1016/0379-6787(88)90065-8
  • Ravichandiran, C., Sakthivelu, A., Davidprabu, R., Valanarasu, S., Kathalingam, A., Ganesh, V., Shkir, M., Algarni, H., & AlFaify, S. (2019). In-depth study on structural, optical, photoluminescence and electrical properties of electrodeposited Cu2O thin films for optoelectronics: An effect of solution pH. Microelectron. Eng, 210(1), 27–34. https://doi.org/10.1016/j.mee.2019.03.013
  • Read, C., Steinmiller, E., & Choi, K. (2009). Atomic plane-selective deposition of gold nanoparticles on metal oxide crystals exploiting preferential adsorption of additives. J. Am. Chem. Soc, 131(34), 12040–12041. https://doi.org/10.1021/ja9036884
  • Riveros, G., Garmendia, A., Ramírez, D., Tejos, M., Grez, P., Gómez, H., & Dalchielec, E. A. (2012). Study of the electrodeposition of Cu2O thin films from DMSO solution. J. Electrochem. Soc, 160(1), 28–33. https://doi.org/10.1149/2.029302jes
  • Shahbazi, P., & Kiani, A. (2016). Fabricated Cu2O porous foam using electrodeposition and thermal oxidation as a photocatalyst under visible light toward hydrogen evolution from water. Int. J. Hydrog. Energy, 41(39), 17247–17256. https://doi.org/10.1016/j.ijhydene.2016.07.080
  • Stepniowski, W., & Misiolk, W. (2018). Review of fabrication methods, physical properties, and applications of nanostructured copper oxides formed via electrochemical oxidation. Nanomaterials, 8(6), 379–398. https://doi.org/10.3390/nano8060379
  • Talib, R., Abdullah, M., Al-salman, H., Mohammad, S., & Allam, N. (2016). ZnO nanorods/polyaniline-based inorganic/organic heterojunctions for enhanced light sensing applications. J. Solid State Sci. Tech, 5(3), 142–147. https://doi.org/10.1149/2.0031603jss
  • Tello, A., Gómez, H., Muñoz, E., Riveros, G., Pereyra, C., Dalchiele, E., & Marotti, R. E. (2012). Electrodeposition of nanostructured ZnO thin films from dimethylsulfoxide solution: Effect of temperatures on the morphological and optical properties. J. Electrochem. Soc, 159(12), 750–755. https://doi.org/10.1149/2.017301jes
  • Verdaguer, J. (2016). The specific immunotherapy of autoimmune diseases through the nanomedicine. Endocrinol Y Nutr, 63(9), 437–439. https://doi.org/10.1016/j.endonu.2016.05.003
  • Wang, D., Peng, Q., & Li, Y. (2010). Nanocrystalline intermetallics and alloys. Nano. Res, 3(8), 574–580. https://doi.org/10.1007/s12274-010-0018-4
  • Xua, L., Xua, H., Wua, S., & Zhang, X. (2012). Synergy effect over electrodeposited submicron Cu2O films in photocatalytic degradation of methylene blue. Appl. Surf. Sci, 258(11), 4934–4938. https://doi.org/10.1016/j.apsusc.2012.01.122
  • Yang, Y., Li, Y., & Pritzker, M. (2016). Control of Cu2O film morphology using potentiostatic pulsed electrodeposition. Electrochim. Acta, 213(1), 225–235. https://doi.org/10.1016/j.electacta.2016.07.116
  • Zhao, W., Fu, W., Yang, H., Tian, C., Li, M., Li, Y., Zhang, L., Sui, Y., Zhou, X., Chen, H., Zou, G. (2011). Electrodeposition of Cu2O film and their photoelectrochemical properties. CrystEngComm, 13(8), 2871–2877. https://doi.org/10.1039/C0CE00829J
  • Zhu, C., Osherov, A., & Panzer, M. (2013). Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochimica Acta, 111(1), 771–778. https://doi.org/10.1016/j.electacta.2013.08.038
  • Zoolfakar, A., Rani, R., Morfa, A., O’Mullane, A., & Kalantar-zadeh, K. (2014). Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem, 27(2), 5247–5270. https://doi.org/10.1039/C4TC00345D