1,284
Views
1
CrossRef citations to date
0
Altmetric
SYSTEMS & CONTROL

Optimal design of an adaptive robust proportional-integral-derivative controller based upon sliding surfaces for under-actuated dynamical systems

ORCID Icon & | (Reviewing editor)
Article: 1886738 | Received 17 Aug 2020, Accepted 22 Dec 2020, Published online: 11 Mar 2021

References

  • Astrom, K. J., Albertos, P., & Quevedo, J. (2001). PID control. Control Engineering Practice, 9(11), 1159–18. https://doi.org/10.1016/S0967-0661(01)00061-2
  • Astrom, K. J., & Hagglund, T. (2001). The future of PID control. Control Engineering Practice, 9(11), 1163–1175. https://doi.org/10.1016/S0967-0661(01)00062-4
  • Belkadi, A., Oulhadj, H., Touati, Y., Khan, S. A., & Daachi, B. (2017). On the robust PID adaptive controller for exoskeletons: A particle swarm optimization based approach. Applied Soft Computing, 60, 87–100. https://doi.org/10.1016/j.asoc.2017.06.012
  • Beschi, M., Padula, F., & Visioli, A. (2016). Fractional robust PID control of a solar furnace. Control Engineering Practice, 56, 190–199. https://doi.org/10.1016/j.conengprac.2016.04.005
  • Cahng, W. D., & Yan, J. J. (2005). Adaptive robust PID controller design based on a sliding mode for chaotic systems, Chaos. Soltions and Fractals, 26(1), 167–175. https://doi.org/10.1016/j.chaos.2004.12.013
  • Chen, L., & Van, M. (2020). Sliding mode control of a class of underactuated system with non-integrable momentum. Journal of the Franklin Institute, 357(14), 9484–9504. https://doi.org/10.1016/j.jfranklin.2020.07.022 In press, journal pre-proof, Available online
  • De Moura Oliveira, P. B., Solteiro Pires, E. J., & Novais, P. (2015). Design of posicast PID control systems using a gravitational search algorithm. Neurocomputing, 167, 18–23. https://doi.org/10.1016/j.neucom.2014.12.101
  • Dwyer, A. O. (2009). Handbook of PI and PID controller tuning rules. Imperial College Press. https://doi.org/10.1142/p575
  • Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press A M Arbor. https://ieeexplore.ieee.org/servlet/opac?bknumber=6267401
  • Jalali, N., Razmi, H., & Doagou-Mojarrad, H. (2020). Optimized fuzzy self-tuning PID controller design based on Tribe-DE optimization algorithm and rule weight adjustment method for load frequency control of interconnected multi-area power systems. Applied Soft Computing, 93, 106424. https://doi.org/10.1016/j.asoc.2020.106424
  • Jiménez, T., Merayo, N., Andrés, A., Durán, R. J., Aguado, J. C., de Miguel, I., Fernández, P., Lorenzo, R. M., & Abril, E. J. (2015). An auto-tuning PID control system based on genetic algorithms to provide delay guarantees in passive optical networks. Expert Systems with Applications, 42(23), 9211–9220. https://doi.org/10.1016/j.eswa.2015.07.078
  • Keshtkar, N., Keshtkar, S., Moreno, J. A., Poznyak, A., & Kojima, H. (2018). LMI-based sliding mode control of an underactuated control moment gyroscope system. IFAC-PapersOnLine, 51(13), 291–296. https://doi.org/10.1016/j.ifacol.2018.07.293
  • Kumar, A., & Kumar, V. (2017). Evolving an interval type-2 fuzzy PID controller for the redundant robotic manipulator. Expert Systems with Applications, 73, 161–177. https://doi.org/10.1016/j.eswa.2016.12.029
  • Lochan, K., Roy, B. K., & Subudhi, B. (2016). SMC controlled chaotic trajectory tracking of two-link flexible manipulator with PID sliding surface. IFAC-Papers On Line, 49(1), 219–224. https://doi.org/10.1016/j.ifacol.2016.03.056
  • Londhe, P. S., Singh, Y., Santhakumar, M., Patre, B. M., & Waghmare, L. M. (2016). Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator. ISA transactions, 63, 218–232. https://doi.org/10.1016/j.isatra.2016.02.016
  • Mahmoodabadi, M. J., Bagheri, A., Arbani Mostaghim, S., & Bisheban, M. (2011). Simulation of stability using java application for Pareto design of controllers based on a new multi-objective particle swarm optimization. Mathematical and Computer Modelling, 54(5–6), 1584–1607. https://doi.org/10.1016/j.mcm.2011.04.032
  • Mahmoodabadi, M. J., & Khoobroo Haghbayan, H. (2020). An optimal adaptive hybrid controller for a fourth-order under-actuated nonlinear inverted pendulum system. Transactions of the Institute of Measurement and Control, 42(2), 285–294. https://doi.org/10.1177/0142331219868589
  • Mahmoodabadi, M. J., & Nejadkourki, N. (2020). Optimal fuzzy adaptive robust PID control for an active suspension system. Australian Journal of Mechanical Engineering, 1–11. https://doi.org/10.1080/14484846.2020.1734154
  • Mahmoodabadi, M. J., & Rafee, J. (2020). A new optimal robust adaptive fuzzy controller for a class of non-linear under-actuated systems. Systems Science & Control Engineering, 8(1), 359–368. https://doi.org/10.1080/21642583.2020.1775719
  • Mahmoodabadi, M. J., & Soleymani, T. (2020). Optimum fuzzy combination of robust decoupled sliding mode and adaptive feedback linearization controllers for uncertain under-actuated nonlinear systems. Chinese Journal of Physics, 64, 241–250. https://doi.org/10.1016/j.cjph.2019.11.015
  • Mehra, R., Satpute, S. G., Kazi, F., & Singh, N. M. (2017). Control of a class of underactuated mechanical systems obviating matching conditions. Automatica, 86, 98–103. https://doi.org/10.1016/j.automatica.2017.07.033
  • Milovanović, M. B., Antić, D. S., Milojković, M. T., Nikolić, S. S., Perić, S. L., & Spasić, M. D. (2016). Adaptive PID control based on orthogonal endocrine neural networks. Neural Networks, 84, 80–90. https://doi.org/10.1016/j.neunet.2016.08.012
  • Mohamed, K., Chadli, M., & Chaabane, M. (2012). Unknown inputs observer for a class of nonlinear uncertain systems: An LMI approach. International Journal of Automation and Computing, 9(3), 331–336. https://doi.org/10.1007/s11633-012-0652-2
  • Monga, B., & Moehlis, J. (2020). Supervised learning algorithms for controlling underactuated dynamical systems. Physica D. Nonlinear Phenomena, 412, 132621. https://doi.org/10.1016/j.physd.2020.132621
  • Moradi, H., Setayesh, H., & Alasty, A. (2016). PID-Fuzzy control of air handling units in the presence of uncertainty. International Journal of Thermal Sciences, 109, 123–135. https://doi.org/10.1016/j.ijthermalsci.2016.05.024
  • Mosaad, A. M., Attia, M. A., & Abdelaziz, A. Y. (2019). Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Engineering Journal, 10(4), 755–767. https://doi.org/10.1016/j.asej.2019.07.004
  • Mousakazemi, S. M. H., Ayoobian, N., & Ansarifar, G. R. (2018). Control of the reactor core power in PWR using optimized PID controller with the real-coded GA. Annals of Nuclear Energy, 118, 107–121. https://doi.org/10.1016/j.anucene.2018.03.038
  • Ovalle, L. R., Ríos, H., & Llama, M. A. (2019). Continuous sliding-mode control for underactuated systems: Relative degree one and two. Control Engineering Practice, 90, 342–357. https://doi.org/10.1016/j.conengprac.2019.07.014
  • Özdemir, M. T., Öztürk, D., Eke, Ī., Çelik, V., & Lee, K. Y. (2015). Tuning of optimal classical and fractional order PID parameters for automatic generation control based on the bacterial swarm optimization. IFAC-Papers On Line, 48(30), 501–506. https://doi.org/10.1016/j.ifacol.2015.12.429
  • Pezhman, A., Rezapour, J., & Mahmoodabadi, M. J. (2020). An optimal hybrid adaptive controller based on the multi-objective evolutionary algorithm for an under-actuated nonlinear ball and wheel system. Journal of Mechanical Science and Technology, 34(4), 1723–1734. https://doi.org/10.1007/s12206-020-0334-x
  • Qiu, J., Wenqiang, J., & Chadli, M. (2020). A novel fuzzy output feedback dynamic sliding mode controller design for two-dimensional nonlinear systems, IEEE Transactions on Fuzzy Systems, https://doi.org/10.1109/TFUZZ.2020.3008271.
  • Reyhanoglu, M., Schaft, A. V. D., McClamroch, N. H., & Kolmanovsk, I. (1996). Nonlinear control of a class of underactuated systems, Proceedings of the 35th conference on decision and control, Kobe, Japan, 2, 1682–1687. https://doi.org/10.1109/CDC.1996.572793
  • Sahu, B. K., Pati, S., Mohanty, P. K., & Panda, S. (2015). Teaching–learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Applied Soft Computing, 27, 240–249. https://doi.org/10.1016/j.asoc.2014.11.027
  • Sarhadi, P., Ranjbar Noei, A., & Khosravi, A. (2016). Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robotics and Autonomous Systems, 83, 87–93. https://doi.org/10.1016/j.robot.2016.05.016
  • Shang, Y. (2018a). Resilient multiscale coordination control against adversarial nodes. Energies, 11(7), 1844. https://doi.org/10.3390/en11071844
  • Shang, Y. (2020). Consensus of hybrid multi-agent systems with malicious nodes. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(4), 685–689. https://doi.org/10.1109/TCSII.2019.2918752
  • Shang, Y. (2018b). Resilient consensus of switched multi-agent systems, Systems & Control Letters, 122, Pages 12–18, https://doi.org/10.1016/j.sysconle.2018.10.001.
  • Sungthong, A., & Assawinchaichote, W. (2016). Particle swam optimization based optimal PID parameters for air heater temperature control system. Procedia Computer Science, 86, 108–111. https://doi.org/10.1016/j.procs.2016.05.027
  • Tavakoli, A. R., & Seifi, A. R. (2016). Adaptive self-tuning PID fuzzy sliding mode control for mitigating power system oscillations. Neurocomputing, 218, 146–153. https://doi.org/10.1016/j.neucom.2016.08.061
  • Wang, G., Chadli, M., & Basin, M. (2020). Practical terminal sliding mode control of nonlinear uncertain active suspension systems with adaptive disturbance observer, IEEE/ASME Transactions on Mechatronics, https://doi.org/10.1109/TMECH.2020.3000122.
  • Wang, Y., Xie, X., Chadli, M., Xie, S., & Peng, Y. (2020). Sliding mode control of fuzzy singularly perturbed descriptor systems, IEEE Transactions on Fuzzy Systems, https://doi.org/10.1109/TFUZZ.2020.2998519.
  • Xu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., & Li, C. (2016). An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm. Energy Conversion and Management, 111, 67–78. https://doi.org/10.1016/j.enconman.2015.12.049
  • Yaghoobi, S., & Mojallali, H. (2016). Tuning of a PID controller using improved chaotic krill herd algorithm. Optik – International Journal for Light and Electron Optics, 127(11), 4803–4807. https://doi.org/10.1016/j.ijleo.2016.01.055
  • Yin, H., Chen, Y. H., Huang, J., & Lü, H. (2020). Tackling mismatched uncertainty in robust constraint-following control of underactuated systems. Information Sciences, 520, 337–352. https://doi.org/10.1016/j.ins.2020.02.033
  • Zhang, Z., Wu, Y., & Huang, J. (2016). Robust adaptive antiswing control of underactuated crane systems with two parallel payloads and rail length constraint. ISA transactions, 65, 275–283. https://doi.org/10.1016/j.isatra.2016.07.014