1,296
Views
5
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Assessment of alkaline treatment of palm kernel fiber and curing duration on selected properties of cement-paper composite boards

, ORCID Icon, , , , , & | (Reviewing editor) show all
Article: 1909690 | Received 05 Nov 2020, Accepted 26 Feb 2021, Published online: 26 Apr 2021

References

  • Ahmad, H., & Md.:, N. N. (2008). Mix design of palm oil fiber concrete. Conf. Proceedings: Int. Conf. on Civil Engineering. Pahang, Malaysia.
  • Akindapo, J. O., Orueri, D. U., Garba, D. K., & Ogabi, R. (2017). Production of a safety helmet using palm kernel fiber and shell particulates. International Journal of Science and Engineering Invention, 6(2), 44–25.
  • Akinwande, A. A. (2020). Evaluation of the property values of coir-fiber reinforced cement stabilized bricks applying experimental trend/performance analysis (Akinwande’s approach). International Journal of Advanced Academic Research, 6(9), 90–118. https://doi.org/10.46654/ij.24889849
  • Ali, A., Shaker, K., Nawab, Y., Jabbar, M., Hussain, T., Militky, J., & Baheti, V. (2016). hydrophobic treatment of natural fibers and their composites-A review. Journal of Industrial Textiles, 47(8), 1–47. https://doi.org/10.1177/1528083716654468
  • Amiandamhen, S. O., & Osadolor, S. O. (2020). Recycled waste paper-cement composite panels reinforced with kenaf fibers: Durability and mechanical properties. Journal of Material Cycles and Waste Management, 22(5), 1492–1500. https://doi.org/10.1007/s10163-020-01041-2
  • Amuthakkannan, P., Manikandan, V., Winowlin Jappes, J. T., & Uthayakumar, M. (2013). Effect of fiber length and fiber content on mechanical properties of short basalt fiber reinforced polymer matrix composites. Materials Physics and Mechanics, 16, 107–117.
  • Animesh, K., Tiwari, J., & Soni, K. (2017). A review of partial replacement of fine aggregate and coarse aggregate by waste glass powder and coconut shell. International Journal of Engineering Research & Technology, 4(10), 187–190.
  • ASTM 293/C293M. (2016). Standard test method for flexural strength of concrete (using simple beam with center-point loading). ASTM International.
  • ASTM C 596-18. (2018). Standard test method for drying shrinkage of mortars containing hydraulic cement. ASTM International.
  • ASTM C150/C150M-20. (2020). Standard specification for portland cement mortar. ASTM International.
  • ASTM C1585-13. (2013). Standard test method for measurement of rate of absorption of water by hydraulic-cement concrete. ASTM International.
  • ASTM C192/C192M-19. (2019). Standard practice for making and curing concrete test specimen in the laboratory. ASTM International.
  • ASTM C496-17. (2017). Standard test method for splitting tensile of cylindrical concrete specimen. ASTM International.
  • ASTM D256-10. (2018). Standard test method for determining izod pendulum impact resistance of plastics. ASTM International.
  • ASTM D6913/D6913M-17. (2017). Standard test method for particle-size distribution (gradation) of soils using sieve analysis. ASTM International.
  • Bakri, M. K., Jayamani, E., Hamdan, S., Rahman, M., Soon, K., & Kakar, A. (2016). Fundamental study on the effect of alkaline treatment on natural fibers structures and behaviors. Journal of Engineering and Applied Sciences, 11, 8759–8763.
  • Balboul, N., Jaber, M., & Fadhel, A. (2014). Mechanical and physical properties of natural fiber cement board for building partitions. Physical Sciences Research International, 2(3), 49–53.
  • Bentz, D. P., & Jensen, D. M. (2004). Mitigation strategies for autogenously cracking. Cement and Concrete Composites, 26(6), 677–685. https://doi.org/10.1016/S0958-9465(03)00045-3
  • BS 1881-122:2011. (2011). Testing concrete. Method for determination of water absorption. British Standard Group.
  • BS 3137. (1972). Methods for determining the bursting strength of paper. British Standard Group.
  • BS EN 300. (2006). Oriented strand boards. Definition, classification and specifications (pp. 2006). British Standard (European Norm.
  • Bunda, J. C., Diloy, J. C. D., Gatbunton, T. L., Tabigne, J. R. D., & Abaya, S. D. (2020). Utilization of rice straws as fiber reinforcement in rice husk ash cement bonded board. International Journal of Civil and Structural Engineering, 8(1), 94–104.
  • Dorieh, A., Mahmoodi, N. O., Mamaghani, M., & Pizzi, A. P. (2018). Comparison of the properties of urea-formaldehyde resins by the use of formalin or urea formaldehyde condensates. Journal of Adhesion Science and Technology, 32(23), 2537–2551. https://doi.org/10.1080/01694243.2018.1492780
  • Ejiogu, I. K., Odiji, M. O., Ayejagbara, M. O., Shekarri, T. N. B., & Ibeneme, U. (2018). Mechanical Properties of Urea Formaldehyde Particle Board Composite. American Journal of Chemical and Biochemical Engineering, 2(1), 10–15. https://doi.org/10.11648/j.ajcbe.20180201.12
  • Elawady, E., El Hefnawy, A. A. E., & Ibrahim, R. A. F. (2014). Comparative study on strength, permeability and sorptivity of concrete and their relation with concrete durability. International Journal of Engineering and Innovative Technology, 4(4), 132–139.
  • Ezeudu, O. B., Agunwamba, J. C., Ezeasor, I. C., & Madu, C. N. (2018). Sustainable production and consumption of paper and paper products in Nigeria: A review. Resources, 8(53), 1–23. https://doi.org/10.3390/resources80110053
  • Frias, M., & Cabrera, J. (2000). Pore size distribution and degree of hydration of metakaolin-cement pastes. Cement and Concrete Research, 30(4), 561–569. https://doi.org/10.1016/S0008-8846(00)00203-9
  • Ghanem, H., Machaka, M., Khatib, J., Elkordi, A., & Baalbaki, O. (2020). Effect of palm fibers addition on absorption characteristic and mechanical properties of concrete. 5th International Conference on Sustainable Construction Materials and Technologies. https://doi.org/10.18552/2019/IDSCMT5098.
  • Guller, C., & Buyuksari, U. (2011). Effect of production parameters on the physical and mechanical properties of particleboards made from peanut (Arachis Hypogaea L.) hull. Bioresources, 6(4), 5027–5036. https://doi.org/10.15376/biores.6.4.5027-5036
  • Hasan, H., Alhussainy, F., Sheikh, M., & Hadi, M. (2016). Direct tensile test of high strength concrete with and without steel fibers. Proceedings in Australian Conference on the Mechanics of Structures and Materials (ACMSM24), Perth Australia.
  • Holt, E., & Levis, M. (2004). Cracking risks associated with early age shrinkage. Cement and Concrete Composites, 26(5), 521–530. https://doi.org/10.1016/S0958-9465(03)00068-4
  • Hubbe, M., Ayoub, A., Daystar, J. S., Venditti, R. A., & Pawlak, J. J. (2013). Enhanced absorbent products incorporating cellulose and its derivatives: A review. BioResources, 8(4), 6556–6629. https://doi.org/10.15376/biores.8.4.6556-6629
  • Hussein, A. A., Abd El-Hameed, G. D., Hadhood, H. M., & El-Attar, A. G. (2015). Properties of normal and high strength fiber reinforced concrete using recycled aggregate and different fibers. World Applied Sciences Journal, 33(11), 1676–1685. https://doi.org/10.5829/idosi.wasj.2015.33.11.15620
  • Iffat., S. (2015). Relation between density and compressive strength of hardened concrete. Concrete Research Letters, 6(4), 182–189.
  • IS 12406. (2003). Medium density fiber boards for general purpose- specifications (wood and other lignocellulose products). Bureau of Indian Standards.
  • IS 2380. (1977). Methods of test for wood particle boards and boards from lignocellulose materials. Bureau of Indian Standards.
  • IS 2386-3. (1963). ordinary Portland cement 43 grade specification. Bureau of Indian Standards.
  • IS 3087. (2005). Practical boards of wood of wood and other lignocellulose materials (medium density) for general purposes. Specifications. Bureau of Indian Standards.
  • IS 3478. (1966). Specification for high-density wood particle boards (wood and other lignocellulose products). Bureau of Indian Standards.
  • IS 8112. (2013). Ordinary Portland cement 43 grade specification. Bureau of Indian Standards.
  • Ji, Y., Peng, Y., Strand, A., Fu, S., Sundberg, A., & Retulainen, E. (2018). Fiber evolution during alkaline treatment and its impact on handsheet properties. Bioresources, 13(4), 7310–7324. https://doi.org/10.15376/biores.13.4.7310-7324
  • Johnson, M. P. (2016). An overview of photosynthesis. Essays in Biochemistry, 60(3), 255–273. https://doi.org/10.1042/EBC20160016
  • Kavitha, S. (2017). A review on natural fibers in the concrete. International Journal of Advanced Engineering and Technology, 1(1), 32–35.
  • Lavanya, D., Kulkarni, P., Dixit, M., Raavi, P. K., & Krishna, L. N. V. (2011). Sources of cellulose and their applications-A review. International Journal of Drug Formulation and Research, 2, 19–38.
  • Li, J., Yang, Z., Hu, X., Hong, G., Zhang, S., & Song, W. (2018). The effect of alkali treatment on properties of dopamine modification of bamboo fiber/polylactic acid composites. Polymers (Basel), 10(4), 403. https://dx.doi.org/10.3390/polym10040403
  • Mazzanti, V., Bonanno, A., Mollica, F., & Filippone, G. (1981). Influence of alkaline treatment on hemp fibers filled poly (lactic acid). AIP Conference Proceedings, 20016. 2018. https://doi.org/10.1063/11.5045878.
  • Mendes, R., Mendes, L., Olibeira, S., & Freire, T. (2015). Use of sugarcane bagasse for particleboard production. Key Engineering Materials, 634, 163–171. https://doi.org/10.4028/www.scientific.net/KEM.634.163
  • Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015, 15. Article ID 243947. https://doi.org/10.1155/2015/243947.
  • Momoh, E. O., & Osofer, A. I. (2020). Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering, 14(1), 94–108. https://doi.org/10.1007/s11709-019-0576-9
  • Nyang, G. M., Muumbo, A. M., & Ondieki, C. M. M. (2019). Production of particle boards from sugarcane bagasse and euphorbia sap. International Journal of Composite Materials, 9(1), 1–6. https://doi.org/10.5923/j.cmaterials.20190901.01
  • Obiukwu, O., Opara, I., & Udeani, H. (2016). Study on the mechanical properties of palm kernel fiber reinforced epoxy and Poly-Vinyl Alcohol (PVA) composite material. International Journal of Engineering and Technologies, 7, 68–77. https://doi.org/10.18052/www.scipress.com/IJET.7.68
  • Okeola, A. A., Abuodha, S. O., & Mwero, J. (2018). Experimental investigation of the physical and mechanical properties of sisal fiber-reinforced concrete. Recent Advancements in Fiber Reinforced Concrete and Its Application, 6(3), 1–16. https://doi.org/10.3390/fib6030053
  • Oladele, I., Oghie, I. I., Adediran, A., Akinwekomi, A., Adetula, Y., & Olayanju, T. (2019). Modified palm kernel shell fiber/particulate cassava peel hybrid reinforced epoxy composites. Results in Materials, 5, 100053. https://doi.org/10.1016/j.rinma.2019.100053
  • Przybysz, P., Dubowik, M., Kucner, M. A., Przybysz, K., & Przybysz, K. B. (2016). Contribution of hydrogen bonds to paper strength properties. Plos One, 11(5), 1–10. https://doi.org/10.1371/journal.pone.0155809
  • Raheem, A. A., Soyingbe, A. A., & Emenike, J. A. (2013). Effects of curing methods on density and compressive strength of concrete. International Journal of Applied Science and Technology, 3(4), 55–64.
  • Rashid, M., Samad, S. A., Gafur, M. A., Qadir, R., & Chowdhury, A. M. S. (2016). Effect of reinforcement of hydrophobic grade banana (Musa ornata) bark fiber on the physicomechanical properties of isotactic polypropylene. International Journal of Polymer Science, 2016, 1–9. Article ID 9017956. https://doi.org/10.1155/2016/9017956
  • Ren, Z., Wang, C., Zou, Q., Yousfani, S. H. S., Anuar, N. I. S., Zakaria, S., & Liu, X. (2019). Effect of alkali treatment on interfacial and mechanical properties of kenaf fiber reinforced epoxy unidirectional composites. Sains Malaysiana, 48(1), 173–181. https://dx.doi.org/10.17576/jsm-2019-4801-20
  • Rivela, B., Hospido, A., Moreira, M. T., & Feijoo, G. (2006). Life cycle inventory of particleboard: A case study in the wood Sector. The International Journal of Life Cycle Assessment, 11(2), 106–113. https://doi.org/10.1065/Ica2005.05.206
  • Ruat, A. N., & Gomez, C. P. (2016). Thermal and mechanical performance of oil palm fiber reinforced mortar utilizing palm oil fly ash as a complementary binder. Construction and Building Materials, 126, 476–483. https://dx.doi.org/10.1016/j.conbuildmat.2016.09.034
  • Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: An overview. Natural Resources, 7(3), 108–114. https://doi.org/10.4236/nr.2016.73011
  • Santamaria, J., Fuller, B., & Fafitis, A. (2007). Structural properties of a new material made of waste paper. Computational Methods and Experimental Measurements XIII, 46, 1–11. https://doi.org/10.2495/cmem070561
  • Siddiqui, M. D., Nyberg, W., Smith, W., Blackwell, B., & Riding, K. (2013). Effect of curing water availability and composition on cement hydration. ACI Materials Journal, 110, 315–322.
  • Stern, D., & Kaufmann, R. (2014). Anthropogenic and natural causes of climate change. Climatic Change, 122(1–2), 1–2. https://doi.org/10.1007/s10584-013-1007x
  • Tan, M. Y., Kuan, H. T. N., & Lee, M. C. 2017. Characterization of alkaline treatment and fiber content on the physical, thermal and mechanical properties of ground coffee waste/oxo-biodegradable HDPE biocomposites. International Journal of Polymer Science, 12. Article ID 6258151. https://doi.org/10.1155/2017/6258151.
  • Tangbo, M. U., Gado, A. A., & Ibrahim, M. (2019). Determining properties of a lightweight papercrete containing paper sludge, pumice, cementitious material and pumice aggregate for sustainable construction. Environmental Technology and Science Journal, 10(1), 114–125.
  • Tomas, U., & Ganiron, Jr. (2013). Sustainable management of waste coconut shells as aggregates in concrete mixture. Journal of Engineering Science and Technology Review, 6(5), 7–14. https://doi.org/10.25103/jestr.065.02
  • Tomasz, T., & Tomasz, Z. (2019). Effect of hydration and carbonation progress on the porosity and permeability of cement pastes. Materials, 12, 192, 1–20. https://doi.org/10.3390/ma12010192
  • Wimmer, R., Weigl, M., & Schoneberg, S. (2011. Particleboards made from hardwoods-what is the significance. Conference Proceeding: International Scientific Conference on Hardwood Processing, Blacksburg Virginia.
  • Xian, D.: Effect of nanoclay fillers on wood adhesives and particle board properties [MSc. Thesis]. University of British Columbia 2012.
  • Yang, J., Wang, Q., & Zhou, Y. (2017). Influence of curing time on the drying shrinkage of concrete with different binders and water-to-binder ratios. Advances in Materials Science and Engineering, 2017, 1–10. Article ID 2695435. https://doi.org/10.1155/2017/2695435
  • Zhang, M. H., Sharif, M. S. H., & Lu, G. (2007). Impact resistance of high strength fiber reinforced concrete. Magazine of Concrete Research, 59(3), 199–210. https://doi.org/10.1680/macr.2007.59.3.199
  • Zhang, P., Wittmann, F. H., & Zhao, T. J. (2011). Quantitative determination of capillary absorption of concret. Basic Research on Concrete and Applications. Proceedings. ASME Int. Workshop, (pp. 9–20).
  • Zheng, Y., Pan, Z., Zhang, R., Jenkins, B. M., & Blunk, S. (2007). Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresources Technology, 98(6), 1304–1310. https://doi.org/10.1016/j.biortech.2006.04.036