1,878
Views
4
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Relationships of soil erodibility parameters and water quality indices along Tigris Riverbanks, Baghdad City, Iraq

, ORCID Icon & | (Reviewing editor)
Article: 1917330 | Received 18 Jan 2021, Accepted 30 Mar 2021, Published online: 27 Apr 2021

References

  • Abbas, M. N., Al-Madhhachi, A. S. T., & Esmael, S. A. (2019). Quantifying soil erodibility parameters due to wastewater chemicals. International Journal of Hydrology Science and Technology, 9(5), 550–32. https://doi.org/10.1504/IJHST.2019.102915
  • Abdulkareem, J. H., Pradhan, B., Sulaiman, W. N. A., & Jamil, N. R. (2019). Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geoscience Frontiers, 10(2), 389–403. https://doi.org/10.1016/j.gsf.2017.10.010
  • Ali, A., Al-Ansari, N., & Knutsson, S. (2012). Morphology of Tigris River within Baghdad city. Hydrology and Earth System Sciences, 16(10), 3783–3790. https://doi.org/10.5194/hess-16-3783-2012
  • Al-Madhhachi, A. S. T., Al-Mussawy, H. A., Basheer, M. I., & Abdul-Sahib, A. A. (2020). Quantifying Tigris riverbanks stability of southeast Baghdad city using BSTEM. International Journal of Hydrology Science and Technology, 10(3), 230–247. https://doi.org/10.1504/IJHST.2020.107212
  • Al-Madhhachi, A. S. T., Mutter, G. M., & Hasan, M. B. (2019). Predicting mechanistic detachment model due to lead-contaminated soil treated with Iraqi stabilizers. KSCE Journal of Civil Engineering, 23(7), 2898–2907. https://doi.org/10.1007/s12205-019-2312-3
  • Al-Madhhachi, A. S. T., Rahi, K. A., & Leabi, W. K. (2020). Hydrological impact of Ilisu Dam on Mosul Dam; the River Tigris. Geosciences, 10(4), 120. https://doi.org/10.3390/geosciences10040120
  • Al-Obaidy, A. H. M. J., Maulood, B. K., & Kadhem, A. J. (2010). Evaluating raw and treated water quality of Tigris River within Baghdad by index analysis. Journal of Water Resource and Protection, 2(7), 629. https://doi.org/10.4236/jwarp.2010.27072
  • Al-Tameemi, I. M., Hasan, M. B., Al-Mussawy, H. A., & Al-Madhhachi, A. T. (2020, July). Groundwater quality assessment using water quality index technique: A case study of Kirkuk Governorate, Iraq. IOP Conference Series: Materials Science and Engineering, 881 (1), 012185. IOP Publishing https://doi.org/10.1088/1757-899X/881/1/012185
  • American Society for Testing and Materials (ASTM). (2006) . “Annual Book of ASTM standards 2006”: Nuclear, solar, and geothermal energy. Nuclear energy (II), solar, and geothermal energy. ASTM International.
  • APHA, American Public Health Association. (2012). Standard methods for the examination of water and wastewater. 22nd. 1200
  • Arora, H. S., & Coleman, N. T. (1979). The influence of electrolyte concentration on flocculation of clay suspensions. Soil Science, 127(3), 134–139. https://doi.org/10.1097/00010694-197903000-00002
  • Avecilla, F., Panebianco, J. E., & Buschiazzo, D. E. (2015). Variable effects of saltation and soil properties on wind erosion of different textured soils. Aeolian Research, 18, 145–153. https://doi.org/10.1016/j.aeolia.2015.07.005
  • Ballantine, K., & Schneider, R. (2009). Fifty‐five years of soil development in restored freshwater depressional wetlands. Ecological Applications, 19(6), 1467–1480. https://doi.org/10.1890/07-0588.1
  • Blaisdell, F. W., Hebaus, G. G., & Anderson, C. L. (1981). Ultimate dimensions of local scour. Journal of the Hydraulics Division, 107(3), 327–337. https://doi.org/10.1061/JYCEAJ.0005630
  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 1–13. https://doi.org/10.1038/s41467-017-02142-7
  • Canadian Council of Ministers of the Environment. (2001). Canadian water quality guidelines for the protection of aquatic life: CCME water quality index 1.0, user’s manual. Canadian environmental quality guidelines. CCME.
  • Chabuk, A., Al-Madhlom, Q., Al-Maliki, A., Al-Ansari, N., Hussain, H. M., & Laue, J. (2020). Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arabian Journal of Geosciences, 13(14), 1–23. https://doi.org/10.1007/s12517-020-05575-5
  • Chang, M. (2006). Forest hydrology: An introduction to water and forests. CRC press.
  • Daly, E. R., Fox, G. A., Al-Madhhachi, A. S. T., & Storm, D. E. (2015). Variability of fluvial erodibility parameters for streambanks on a watershed scale. Geomorphology, 231(281–291), 281–291. https://doi.org/10.1016/j.geomorph.2014.12.016
  • Daly, E. R., Fox, G. A., Miller, R. B., & Al-Madhhachi, A. S. T. (2013). A scour depth approach for deriving erodibility parameters from jet erosion tests. Transactions of the ASABE, 56(6), 1343–1351. https://doi.org/10.13031/trans.56.10350
  • De Santis, F., Giannossi, M. L., Medici, L., Summa, V., & Tateo, F. (2010). Impact of physico-chemical soil properties on erosion features in the Aliano area (Southern Italy). Catena, 81(2), 172–181. https://doi.org/10.1016/j.catena.2010.03.001
  • Ewaid, S. H., Abed, S. A., Al-Ansari, N., & Salih, R. M. (2020). Development and evaluation of a water quality index for the Iraqi Rivers. Hydrology, 7(3), 67. https://doi.org/10.3390/hydrology7030067
  • Ewaid, S. H., Abed, S. A., & Kadhum, S. A. (2018). Predicting the Tigris River water quality within Baghdad, Iraq by using water quality index and regression analysis. Environmental Technology & Innovation, 11, 390–398. https://doi.org/10.1016/j.eti.2018.06.013
  • Fazelabdolabadi, B., & Golestan, M. H. (2020). Towards bayesian quantification of permeability in micro-scale porous structures – The database of micro networks. HighTech and Innovation Journal, 1(4), 148–160. https://doi.org/10.28991/HIJ-2020-01-04-02
  • Goldberg, S., & Glaubig, R. A. (1987). Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite. Clays and Clay Minerals, 35(3), 220–227. https://doi.org/10.1346/CCMN.1987.0350308
  • Hanson, G. J. (1990). Surface erodibility of earthen channels at high stresses part ii-developing an in situ testing device. Transactions of the ASAE, 33(1), 132–0137. https://doi.org/10.13031/2013.31306
  • Hanson, G. J., & Cook, K. R. (1997). “Development of excess shear stress parameters for circular jet testing”. ASAE Paper, 972227.
  • Hanson, G. J., & Cook, K. R. (2004). Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Applied Engineering in Agriculture, 20(4), 455. https://doi.org/10.13031/2013.16492
  • Hashim, Z. E., Al-Madhhachi, A. S. T., & Alzubaidi, L. A. (2020). Behavior of soil erodibility parameters due to biological soil crusts using jet erosion tests. Ecological Engineering, 153(105903), 105903. https://doi.org/10.1016/j.ecoleng.2020.105903
  • Hengl, T. (2009). A practical guide to geostatistical mapping. In EUR 22904 EN scientific and technical research series report (2nd ed., pp. 15). Published by Office for Official Publications of the European Communities.
  • Hussain, T. S., & Al-Fatlawi, A. H. (2020). Remove chemical contaminants from potable water by household water treatment system. Civil Engineering Journal, 6(8), 1534–1546. http://dx.doi.org/10.28991/cej-020-03091565
  • Ismail, A. H. (2014). Applicability of Overall Index of Pollution (OIP) for surface water quality in assessment of Tigris River quality within Baghdad. Engineering and Technology Journal, 32(1 Part (A) Engineering), 74–90.
  • Issa, I. E., Al-Ansari, N., Sherwany, G., & Knutsson, S. (2014). Expected future of water resources within Tigris–Euphrates rivers basin, Iraq. Journal of Water Resource and Protection, 6(5), 421–432. https://doi.org/10.4236/jwarp.2014.65042
  • Johnson, L., Richards, C., Host, G., & Arthur, J. (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37(1), 193–208. https://doi.org/10.1046/j.1365-2427.1997.d01-539.x
  • Kachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water, 11(2), 361. https://doi.org/10.3390/w11020361
  • Khanal, A., Fox, G. A., & Al-Madhhachi, A. T. (2016). Variability of erodibility parameters from laboratory mini jet erosion tests. Journal of Hydrologic Engineering, 21(10), 04016030. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001404
  • Lateef, Z. Q., Al-Madhhachi, A. S. T., & Sachit, D. E. (2020). Evaluation of water quality parameters in Shatt AL-Arab, Southern Iraq, using spatial analysis. Hydrology, 7(4), 79. https://doi.org/10.3390/hydrology7040079
  • Malik, M., Mustafa, M. A., & Letey, J. (1992). Effect of mixed Na/Ca solutions on swelling, dispersion and transient water flow in unsaturated montmorillonitic soils. Geoderma, 52(1–2), 17–28. https://doi.org/10.1016/0016-7061(92)90072-F
  • Muftin, F. S., Nashaat, M. R., & Alazawii, L. H. (2018). Assessing the effects of Al-Rasheed electrical power plant on the quality of Tigris River, Southern of Baghdad by Canadian Water Quality Index (CCME WQI). Iraqi Journal of Science, 59(3A), 1162–1168. http://scbaghdad.edu.iq/eijs/index.php/eijs/article/view/400
  • Panhalakr, S. S., & Jarag, A. P. (2016). Assessment of spatial interpolation techniques for river bathymetry generation of Panchganga River basin using geoinformatic techniques. Asian Journal of Geoinformatics, 15, 3.
  • Partheniades, E. (1965). Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, 91(1), 105–139. https://doi.org/10.1061/JYCEAJ.0001165
  • Raeisi-Vanani, H., Soltani-Toudeshki, A. R., Shayannejad, M., Ostad-Ali-Askari, K., Ramesh, A., Singh, V. P., & Eslamian, S. (2017). Wastewater and magnetized wastewater effects on soil erosion in furrow irrigation. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 3(8), 1–14. https://doi.org/10.20431/2454-6224.0308001
  • Rahi, K. A., Al-Madhhachi, A. S. T., & Al-Hussaini, S. N. (2019). Assessment of surface water resources of eastern Iraq. Hydrology, 6(3), 57. https://doi.org/10.3390/hydrology6030057
  • Rehman, H., Kamran, M., Basra, S. M. A., Afzal, I., & Farooq, M. (2015). Influence of seed priming on performance and water productivity of direct seeded rice in alternating wetting and drying. Rice Science, 22(4), 189–196. https://doi.org/10.1016/j.rsci.2015.03.001
  • Sargaonkar, A., & Deshpande, V. (2003). Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environmental Monitoring and Assessment, 89(1), 43–67. https://doi.org/10.1023/A:1025886025137
  • Shainberg, I., Levy, G. J., Rengasamy, P., & Frenkel, H. (1992). Aggregate stability and seal formation as affected by drops’ impact energy and soil amendments. Soil Science, 154(2), 113–119. https://doi.org/10.1097/00010694-199208000-00004
  • Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Nelson, D. W., & Sommers, L. E. 1996. Total Carbon, Organic Carbon, and Organic Matter. 3rd ed. Madison. 961. Soil Science of America and America Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Stein, O. R., & Nett, D. D. (1997). Impinging jet calibration of excess shear sediment detachment parameters. Transactions of the ASAE, 40(6), 1573–1580. https://doi.org/10.13031/2013.21421
  • Sthiannopkao, S., Takizawa, S., Homewong, J., & Wirojanagud, W. (2007). Soil erosion and its impacts on water treatment in the northeastern provinces of Thailand. Environment International, 33(5), 706–711. https://doi.org/10.1016/j.envint.2006.12.007
  • Sthiannopkao, S., Takizawa, S., & Wirojanagud, W. (2006). Effects of soil erosion on water quality and water uses in the upper Phong watershed. Water Science and Technology, 53(2), 45–52. https://doi.org/10.2166/wst.2006.037
  • Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2016). Development of river water quality indices—a review. Environmental Monitoring and Assessment, 188(1), 58. https://doi.org/10.1007/s10661-015-5050-0
  • Turner, R. E., & Rabalais, N. N. (2003). Linking landscape and water quality in the Mississippi River Basin for 200 years. Bioscience, 53(6), 563–572. https://doi.org/10.1641/0006-3568(2003)053[0563:LLAWQI]2.0.CO;2
  • USDA (United States Department of Agriculture). (1954). Saline and alkaline soils. Handbook no. 60. Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C.
  • USDA (United States Department of Agriculture). (1992). Agri-cultural waste management building design Hand-book. Soil Conservation Service.