1,225
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Synthesis of nanostructured cupric oxide for visible light assisted degradation of organic wastewater pollutants

ORCID Icon, , , , , ORCID Icon, , & | (Reviewing editor) show all
Article: 1920563 | Received 22 Nov 2020, Accepted 13 Apr 2021, Published online: 11 May 2021

References

  • Agbe, H., Raza, N., Dodoo-Arhin, D., Chauhan, A., & Kumar, R. V. (2018). H 2 O 2 rejuvenation-mediated synthesis of stable mixed-morphology Ag 3 PO 4 photocatalysts. Heliyon, 4(4), e00599. https://doi.org/10.1016/j.heliyon.2018.e00599
  • Agbe, H., Raza, N., Dodoo-Arhin, D., Kumar, R. V., & Kim, K.-H. (2019). A simple sensing of hazardous photo-induced superoxide anion radicals using a molecular probe in ZnO-Nanoparticles aqueous medium. Environmental Research, 176, 108424. https://doi.org/10.1016/j.envres.2019.03.062
  • Archina, B., Aziz, A., Raman, A., Daud, W., & Ashri, W. M. (2016). Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Reviews in Chemical Engineering, 32(1), 1–17. https://doi.org/10.1515/revce-2015-0034
  • Åsbrink, S., & Norrby, L. J. (1970). A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.’s. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 26(1), 8–15. https://doi.org/10.1107/S0567740870001838
  • Benkhaya, S., M’rabet, S., & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271. https://doi.org/10.1016/j.heliyon.2020.e03271
  • Bhattacharjeea, A., & Ahmaruzzaman, M. (2016). CuO nanostructures: Facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 6(47), 41348–41363. https://doi.org/10.1039/C6RA03624D
  • Black, D. R., Windover, D., Henins, D. G. A., Filliben, J., & James, P. C. (2010). Standard reference material 640d for X-Ray Metrology. National Institute of Standards and Technology, 25(2), 187-190. Gaithersburg, MD. http://www.icdd.com/resources/axa/vol53/V53_19.pdf
  • Byberg, R., Cobb, J., Martin, L. D., Thompson, R. W., Camesano, T. A., Zahraa, O., & Marie-Noëlle, P. (2013). Comparison of photocatalytic degradation of dyes in relation to their structure. Environmental Science and Pollution Research, 20(6), 3570–3581. https://doi.org/10.1007/s11356-013-1551-y
  • Caglioti, G., Paoletti, A., & Ricci, F. P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. Nuclear Instruments, 3(4), 223. https://doi.org/10.1016/0369-643X(58)90029-X
  • Diko, C. S., Qu, Y., Henglin, Z., Li, Z., Nahyoon, N. A., & Fan, S. (2020). Biosynthesis and characterization of lead selenide semiconductor nanoparticles (PbSe NPs) and its antioxidant and photocatalytic activity. Arabian Journal of Chemistry, 13(11), 8411–8423. https://doi.org/10.1016/j.arabjc.2020.06.005
  • Dodoo-Arhin, D., Buabeng, F. P., Mwabora, J. M., Amaniampong, P. N., Agbe, H., Nyankson, E., Obada, D. O., & Asiedu, N. Y. (2018). The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon, 4(7), e00681. https://doi.org/10.1016/j.heliyon.2018.e00681
  • Dollimore, D., Spooner, P., & Turner, A. (1976). The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surface Technology, 4(2), 121–160. https://doi.org/10.1016/0376-4583(76)90024-8
  • Elwell, C. E., Gagnon, N. L., Neisen, B. D., Dhar, D., Spaeth, A. D., Yee, G. M., & Tolman, W. B. (2017). Copper–Oxygen Complexes revisited: Structures, spectroscopy, and reactivity. Chemical Reviews, 117(3), 2059–2107. https://doi.org/10.1021/acs.chemrev.6b00636
  • Habib, M., Muslim, M., Shahadat, M., Islam, M., Ismail, I. M., Islam, T. S., & Mahmood, A. (2013). Photocatalytic decolorization of crystal violet in aqueous Nano-ZnO suspension under visible light irradiation. Journal of Nanostructure in Chemistry, 3(1), 70. https://doi.org/10.1186/2193-8865-3-70
  • Himmetoglu, B., Wentzcovitch, R. M., & Cococcioni, M. (2011). First-principles study of electronic and structural properties of CuO. Physical Review B, 84(11), 115108. https://doi.org/10.1103/PhysRevB.84.115108
  • Hsieh, C. T., Chen, J. M., Lin, H. H., Shih, H. C. (2003). Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism. Appl. Phy. Lett. 82, 3316. https://doi.org/10.1063/1.1569043
  • Kamimura, H., Ushio, H., Matsuno, S., & Hamada, T. (2005). Theory of copper oxide superconductors. Springer-Verlag Berlin Heidelberg.
  • Koehler, J. M., Visaveliya, N., & Knauer, A. (2014). Controlling formation and assembling of nanoparticles by control of electrical charging, polarization, and electrochemical potential. Nanotechnology Reviews, 3(6), 553–568. https://doi.org/10.1515/ntrev-2014-0006
  • Leoni, M., Confente, T., & Scardi, P. (2006). PM2K: A flexible program implementing whole powder pattern modelling. Zeitschrift für Kristallographie Supplements, 2006(suppl_23), 249. https://doi.org/10.1524/zksu.2006.suppl_23.249
  • Luk, S., Samal, P., & Newkirk, J. (Eds): “Surface area, density, and porosity of powders”, In Powder Metallurgy 7. ASM International, Ohio, (2015). https://doi.org/10.31399/asm.hb.v07.a0006107
  • Modec, B., Podjed, N., & Lah, N. (2020). Beyond the simple copper(II) coordination chemistry with quinaldinate and secondary amines. Molecules, 25(7), 1573. https://doi.org/10.3390/molecules25071573
  • Omaish, M., Khan, M. M., Ali, S., & Cho, M. H. (2015). Polythiophene nanocomposites for photodegradation applications: Past, present and future. . Journal of Saudi Chemical Society, 19(5), 494–504. https://doi.org/10.1016/j.jscs.2015.06.004
  • Rahman, M. M., Choudhury, F. A., Hossain, D., Islam, N., Mohsin, S., Hasan, M. M., Uddin, M. F., & Sarker, N. C. (2014). A comparative study on the photocatalytic degradation of industrial dyes using modified commercial and synthesized TiO2 photocatalysts. . Journal of Chemical Engineering, 27(2), 65–71. http://dx.doi.org/10.3329/jce.v27i2.17805
  • Raul, P. K., Senapati, S., Sahoo, A. K., Umlong, I. M., Devi, R. R., Thakur, A. J., & Veer, V. (2014). CuO nanorods: A potential and efficient adsorbent in water purification. RSC Advances, 4(76), 40580–40587. https://doi.org/10.1039/C4RA04619F
  • Rezig, W., & Hadjel, M. (2014). Photocatalytic degradation of vat green 03 textile dye, using the ferrihydrite-modified diatomite with TiO2 /UV process. ”. Oriental Journal of Chemistry, 30(3), 993–1007. http://dx.doi.org/10.13005/ojc/300310
  • Saggioro, E. M., Oliveira, A. S., Pavesi, T., Maia, C. G., Ferreira, L. F. V., & Moreira, J. C. (2011). Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules, 16(12), 10370–10386. https://doi.org/10.3390/molecules161210370
  • Sambandam, A., Xiaogang, W., & Shihe, Y. (2005). Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Materials Chemistry and Physics, 93(1), 35–40. https://doi.org/10.1016/j.matchemphys.2005.02.002
  • Scardi, P., & Leoni, M. (2002). Whole powder pattern modelling. Acta Cryst, A58(190), 1–18. https://doi.org/10.1107/S0108767301021298
  • Shaikh, J. S., Pawar, R. C., Moholkar, A. V., Kim, J. H., & Patil, P. S. (2011). CuO–PAA hybrid films: Chemical synthesis and supercapacitor behavior. Applied Surface Science, 257(9), 4389–4397. https://doi.org/10.1016/j.apsusc.2010.12.069
  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619. https://doi.org/10.1351/pac198557040603
  • Tran, T. H., & Nguyen, V. T. (2014). Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review. International Scholarly Research Notices, 2014(856592), 1–14. https://doi.org/10.1155/2014/856592
  • Tunell, G., Posnjak, E., & Ksanda, C. J. (1935). Geometrical and optical properties, and crystal structure of tenorite. Zeitschrift fur Kristallographie, 90(1), 120–142. https://doi.org/10.1524/zkri.1935.90.1.120
  • Vashistha, M., Kabra, K., Vyas, V., Kumar, R., Sharma, B. K., & Sharma, G. (2016). Electronic structure of cuo from first-principles and experiment. Quantum Matter, 5(5), 717–720. https://doi.org/10.1166/qm.2016.1370
  • Zhang, Q., Zhang, K., Xu, D., Yang, G., & Huang, H. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Material Science, 60(2013), 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003