2,713
Views
13
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Performance of lateritic soil stabilized with combination of bone and palm bunch ash for sustainable building applications

, , , , , , , & | (Reviewing editor) show all
Article: 1921673 | Received 16 Sep 2020, Accepted 03 Feb 2021, Published online: 07 May 2021

References

  • Aguwa, J. I. (2010). Performance of laterite-cement blocks as walling units in relation to sandcrete blocks. Leonardo Electronic Journal of Practices and Technologies, (16), 189–19.
  • Ajayi, E. S. (2012). Effect of lime variation on the moisture content and dry density of lateritic soil in Ilorin, Nigeria. International Journal of Forest, Soil and Erosion, 2(November), 165–168.
  • Akoto, B. K., & Singh, G. (1981). Some geotechnical properties of a lime-stabilized laterite containing a high proportion of aluminium oxide. Engineering Geology, 34(3), 185–199. https://doi.org/10.1016/0013-7952(81)90083-1
  • Alam, I., Naseer, A., & Shah, A. A. (2015). Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Construction and Building Materials, 77, 154–159. https://doi.org/10.1016/j.conbuildmat.2014.12.046
  • Alavéz-Ramírez, R., Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D. C., & Gochi-Ponce, Y. (2012). The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials, 34, 296–305. https://doi.org/10.1016/j.conbuildmat.2012.02.072
  • Amadi, A. A., & Okeiyi, A. (2017). Use of quick and hydrated lime in stabilization of lateritic soil: Comparative analysis of laboratory data. International Journal of Geo-Engineering, 8(1). https://doi.org/10.1186/s40703-017-0041-3
  • Apampa, O. A. (2017). Environmental benefits of Corn Cob Ash in lateritic soil cement stabilization for road works. African Journal of Science, Technology, Innovation and Development, 1338, 1–5. https://doi.org/10.1080/20421338.2017.1399533
  • Arancon, R. A. D., Lin, C. S. K., Chan, K. M., Kwan, T. H., & Luque, R. (2013). Advances on waste valorization: New horizons for a more sustainable society. Energy Science & Engineering, 1(2), 53–71. https://doi.org/10.1201/b19941
  • Aubert, J. E., Maillard, P., J.c., M., & Rafii, M. A. (2016). Towards a simple compressive strength test for earth bricks? Materials and Structures, 49(5), 1641–1654. https://doi.org/10.1617/s11527-015-0601-y
  • Chen, F., Wu, K., Ren, L., Xu, J., & Zheng, H. (2019). Internal curing effect and compressive strength calculation of recycled clay brick aggregate concrete. Materials (Basel), 12(1815), 1–14.
  • Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and Bagasse fibres. Procedia Engineering, 143(Ictg), 658–665. https://doi.org/10.1016/j.proeng.2016.06.093
  • Egenti, C., & Khatib, J. M. (2016). Sustainability of compressed earth as a construction material. Sustainable Construction Materials, 309–341. https://doi.org/10.1016/b978-0-08-100370-1.00013-5
  • EN 206: 2013. (2013). Concrete – Specification, Performance, Production and Conformity. British Standards Institution.
  • Fadele, O. A., & Ata, O. (2018). Water absorption properties of Sawdust Lignin stabilised compressed laterite bricks. Case Studies in Construction Materials, 9, e00187. https://doi.org/10.1016/j.cscm.2018.e00187
  • Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., & Figueiredo, H. (2010). Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceramics International, 36(8), 2383–2393. https://doi.org/10.1016/j.ceramint.2010.07.016
  • García-Díaz, I., Gázquez, M. J., Bolivar, J. P., & López, F. A. (2016). Characterization and valorization of norm wastes for construction materials. Management Hazardous Waste Environment, 13–36. https://doi.org/10.5772/57353
  • Gouvêa, D., Tisse, T., Kahn, H., De Souza, E., & Antoniassi, J. L. (2015). Using Bone Ash as an Additive in Porcelain Sintering. Ceramics International, 41(1), 487–496. https://doi.org/10.1016/j.ceramint.2014.08.096
  • Hamada, H. M., Al-attar, A. A., Yahaya, F. M., Muthusamy, K., Tayeh, B. A., & Humada, A. M. (2020). Effect of high-volume ultrafine palm oil fuel ash on the engineering and transport properties of concrete. Case Studies in Construction Materials, 12. https://doi.org/10.1016/j.cscm.2019.e00318
  • Ifka, T., Palou, M. T., & Bazelová, Z. (2012). The influence of CaO and P2 O5 of Bone Ash upon the reactivity and the burnability of cement raw mixtures. Ceramics - Silikaty, 56(1), 76–84.
  • Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. https://doi.org/10.1016/j.conbuildmat.2013.05.088
  • Jayasinghe, C., & Kamaladasa, N. (2006). Compressive strength characteristics of cement stabilized rammed earth walls. Construction and Building Materials, 21(11), 1971–1976. https://doi.org/10.1016/j.conbuildmat.2006.05.049
  • Joel, M., & Edeh, J. E. (2013). Soil modification and stabilization potential of calcium carbide waste. Advanced Materials Research, 824, 29–36. https://doi.org/10.4028/www.scientific.net/AMR.824.29
  • Johnson, O. A., Madzlan, N., & Kamaruddin, I. (2014). Effect of curing age on the compressive strength of petrovege blocks. Advanced Materials Research, 980, 91–96. https://doi.org/10.4028/www.scientific.net/AMR.980.91
  • Knox, C. L., Dizhur, D., & Ingham, J. M. (2018). Experimental study on scale effects in clay brick masonry prisms and wall panels investigating compression and shear related properties. Construction and Building Materials, 163, 706–713. https://doi.org/10.1016/j.conbuildmat.2017.12.149
  • Lemougna, P. N., Madi, A. B., Kamseu, E., Melo, U. C., Delplancke, M. P., & Rahier, H. (2014). Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications. Construction and Building Materials, 65, 60–66. https://doi.org/10.1016/j.conbuildmat.2014.04.100
  • Madurwar, M. V., Ralegaonkar, R. V., & Mandavgane, S. A. (2013). Application of Agro-Waste for sustainable construction materials: A review. Construction and Building Materials, 38, 872–878. https://doi.org/10.1016/j.conbuildmat.2012.09.011
  • Malkanthi, S. N., Balthazaar, N., & Perera, A. A. D. A. J. (2020). Lime stabilization for compressed stabilized earth blocks with reduced clay and silt. Case Studies in Construction Materials, 12, e00326. https://doi.org/10.1016/j.cscm.2019.e00326
  • Mohammed, A., Hughes, T. G., & Mustapha, A. (2011). The effect of scale on the structural behaviour of masonry under compression. Construction and Building Materials, 25(1), 303–307. https://doi.org/10.1016/j.conbuildmat.2010.06.025
  • Moraes, M. J. B., Moraes, J. C. B., Tashima, M. M., Akasaki, J. L., Soriano, L., Borrachero, M. V., & Payá, J. (2019). Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials, 208, 369–380. https://doi.org/10.1016/j.conbuildmat.2019.03.007
  • Muntohar, A. S. (2011). Engineering characteristics of the compressed-stabilized earth brick. Construction and Building Materials, 25(11), 4215–4220. https://doi.org/10.1016/j.conbuildmat.2011.04.061
  • Neville, A. M. (2000). Properties of Concrete (4th ed.) (low-price ed.). Pearson Education Asia Publ. produced by Longman Malaysia.
  • Nnochiri, E. S., & Adetayo, O. A. (2019). Geotechnical properties of lateritic soil stabilized with Corn Cob Ash. ACTA TECHNICA CORVINIENSIS – Bulletin of Engineering, XII(1), 73–76. https://doi.org/10.20944/preprints201811.0100.v1
  • Obianyo, I. I., Anosike-francis, E. N., Odochi, G., Geng, Y., Jin, R., Peter, A., & Soboyejo, A. B. O. (2020). Multivariate regression models for predicting the compressive strength of bone ash stabilized lateritic soil for sustainable building. Construction and Building Materials, 263, 120677. https://doi.org/10.1016/j.conbuildmat.2020.120677
  • Obianyo, I. I., Onwualu, A. P., & Soboyejo, A. B. O. (2020). Mechanical behaviour of lateritic soil stabilized with bone ash and hydrated lime for sustainable building applications. Case Studies in Construction Materials, 12, e00331. https://doi.org/10.1016/j.cscm.2020.e00331
  • Ojo, E. B., Mustapha, K., Teixeira, R. S., & Savastano, H. (2019). Development of unfired earthen building materials using muscovite rich soils and Alkali activators. Case Studies in Construction Materials, 11, e00262. https://doi.org/10.1016/j.cscm.2019.e00262
  • Okeyinka, O. M., Olutoge, F. A., & Okunlola, L. O. (2018). Durability Performance of Cow-Bone Ash (CBA) Blended Cement Concrete in Aggressive Environment. International Journal of Scientific and Research Publication, 8(12), 10–13. https://doi.org/10.29322/IJSRP.8.12.2018.p8408
  • Ola, S. A. (2013). Geotechnical properties and behaviour of some stabilized Nigerian lateritic soils. Quarterly Journal of Engineering Geology and Hydrogeology. https://doi.org/10.1144/GSL.QJEG.1978.011.02.04
  • Oluremi, J. R., Adedokun, S. I., & Osuolale, O. M. (2012). Stabilization of poor lateritic soils with coconut Husk Ash. International Journal of Engineering Research & Technology, 1(8), 1–9.
  • Oluwatuyi, O. E., Adeola, B. O., Alhassan, E. A., Nnochiri, E. S., Modupe, A. E., Elemile, O. O., Obayanju, T., & Akerele, G. (2018). Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Studies in Construction Materials, 9, e00191. https://doi.org/10.1016/j.cscm.2018.e00191
  • Omoniyi, T. E. (2019). Potential of oil palm (Elaeisguineensis) empty fruit bunch fibres cement composites for building applications. Agricultural Engineering, 153–163.
  • Onakunle, O., Omole, D. O., & Ogbiye, A. S. (2020). Stabilization of lateritic soil from Agbara Nigeria with ceramic waste dust stabilization of lateritic soil from Agbara Nigeria with ceramic waste dust. Cogent Engineering, 6(1). https://doi.org/10.1080/23311916.2019.1710087
  • Onyelowe, K. C. (2017a). Local nanostructured ashes synthesized by incineration, pulverization and spectrophotometric characterization of solid wastes ashes for use as admixtures in soil stabilization. The International Journal of Sustainable Construction Engineering Technology, 7(2), 50–64.
  • Onyelowe, K. C. (2017b). Nanosized Palm Bunch Ash (NPBA) stabilisation of lateritic soil for construction purposes. International Journal of Geotechnical Engineering, (April), 1–9. https://doi.org/10.1080/19386362.2017.1322797
  • Otunyo, A. W., & Chukuigwe, C. C. (2018). Investigation of the impact of palm bunch ash on the stabilization of poor lateritic soil. Nigerian Journal of Technology, 37(3), 600–604. https://doi.org/10.4314/njt.v37i3.6
  • Pacheco-Torgal, F., & Jalali, S. (2011). Eco-Efficient construction and building materials. Construction Management and Economics, 31(11), 1164–1165. https://doi.org/10.1080/01446193.2013.833665
  • Pourkhorshidi, A. R., Najimi, M., Parhizkar, T., Jafarpour, F., & Hillemeier, B. (2010). Cement & concrete composites applicability of the standard specifications of ASTM C618 for evaluation of natural Pozzolans. Cement and Concrete Composites, 32(10), 794–800. https://doi.org/10.1016/j.cemconcomp.2010.08.007
  • (Rahmouni, E. Z. A., Tebbal, N., & Omri, I. Y. (2020). Effect of curing temperature in the alkali-activated brick waste and glass powder mortar and their influence of mechanical resistances RICON19 - REMINE International Conference on Valorization of mining and industrial wastes into construction materials by alkali-activation, KnE Eng, 49–61. https://doi.org/10.18502/keg.v5i4.6794.
  • Rao, S. M., & Shivananda, P. (2005). Role of curing temperature in progress of lime-soil reactions. Geotechnical and Geological Engineering, 23, 79–85. https://doi.org/10.1007/s10706-003-3157-5
  • Rimal, S., Poudel, R. K., & Gautam, D. (2019). Experimental study on properties of natural soils treated with cement Kiln Dust. Case Studies in Construction Materials, 10, e00223. https://doi.org/10.1016/j.cscm.2019.e00223
  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), 1–15. https://doi.org/10.1186/s40643-017-0187-z
  • Segura, J., Pelà, L., Roca, P., & Cabané, A. (2019). Experimental analysis of the size effect on the compressive behaviour of cylindrical samples core-drilled from existing brick masonry. Construction and Building Materials, 228, 116759. https://doi.org/10.1016/j.conbuildmat.2019.116759
  • Series, I. O. P. C., & Science, M. (2019). Stabilization of lateritic soil with cement – Oil palm empty fruit bunch ash blend for California bearing ratio base course requirement. IOP Conference Series: Materials Science and Engineering Papers, 640, 1–11. https://doi.org/10.1088/1757-899X/640/1/012085
  • Udoetok, I. (2012). Characterization of Ash Made from Oil Palm Empty Fruit Bunches (OEFB) characterization of ash made from Oil Palm Empty Fruit Bunches (Oefb). International Journal of Environmental Science, 3(1), 518–524. https://doi.org/10.6088/ijes.2012030131033
  • Wi, K., Lee, H. S., Lim, S., Song, H., Hussin, M. W., & Ismail, M. A. (2018). Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Construction and Building Materials, 183, 139–149. https://doi.org/10.1016/j.conbuildmat.2018.06.156