21,526
Views
32
CrossRef citations to date
0
Altmetric
COMPUTER SCIENCE

Content-based image retrieval: A review of recent trends

, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1927469 | Received 18 Jan 2021, Accepted 29 Apr 2021, Published online: 02 Jun 2021

References

  • Abdul-Hadi, A. M., Abdulhussain, S. H., Mahmmod, B. M., & Pham, D. (2020, January). On the computational aspects of Charlier polynomials. Cogent Engineering, 7(1), 1763553. https://doi.org/10.1080/23311916.2020.1763553
  • Abdulhussain, S. H., & Mahmmod, B. M. (2021, April). Fast and efficient recursive algorithm of Meixner polynomials. Journal of Real-Time Image Processing. https://doi.org/10.1007/s11554-021-01093-z
  • Abdulhussain, S. H., Mahmmod, B. M., Naser, M. A., Alsabah, M. Q., Ali, R., & Al-Haddad, S. A. R. (2021, March). A robust handwritten numeral recognition using hybrid orthogonal polynomials and moments. Sensors, 21(6), 1999. https://doi.org/10.3390/s21061999
  • Abdulhussain, S. H., Ramli, A. R., Al-Haddad, S. A. R., Mahmmod, B. M., & Jassim, W. A. (2017). On computational aspects of tchebichef polynomials for higher polynomial order. IEEE Access, 5(1), 2470–37. https://doi.org/10.1109/ACCESS.2017.2669218
  • Abdulhussain, S. H., Ramli, A. R., Hussain, A. J., Mahmmod, B. M., & Jassim, W. A., “Orthogonal polynomial embedded image kernel,” in Proceedings of the International Conference on Information and Communication Technology - ICICT ’19 Baghdad, Iraq (pp. 215–221).
  • Abdulhussain, S. H., Ramli, A. R., Mahmmod, B. M., Saripan, M. I., Al-Haddad, S. A. R., & Jassim, W. A. (2019, May). A new hybrid form of Krawtchouk and Tchebichef Polynomials: Design and application. Journal of Mathematical Imaging and Vision, 61(4), 555–570. https://doi.org/10.1007/s10851-018-0863-4
  • Agarwal, M., Singhal, A., & Lall, B. (2019, November). Multi-channel local ternary pattern for content-based image retrieval. Pattern Analysis and Applications, 22(4), 1585–1596. https://doi.org/10.1007/s10044-019-00787-2
  • Ahmed, K. T., Ummesafi, S., & Iqbal, A. (2019, November). Content based image retrieval using image features information fusion. Information Fusion, 51, 76–99. https://doi.org/10.1016/j.inffus.2018.11.004
  • Ali, F., and Hashem, A. (2020, June). Content Based Image Retrieval (CBIR) by statistical methods. Baghdad Science Journal, 17 (2(SI)), 694. https://doi.org/10.21123/bsj.2020.17.2(SI).0694
  • Alsmadi, M. K. (2020, April). Content-based image retrieval using color, shape and texture descriptors and features. Arabian Journal for Science and Engineering, 45(4), 3317–3330. https://doi.org/10.1007/s13369-020-04384-y
  • Alzu’bi, A., Amira, A., & Ramzan, N. (2015, October). Semantic content-based image retrieval: A comprehensive study. Journal of Visual Communication and Image Representation, 32, 20–54. https://doi.org/10.1016/j.jvcir.2015.07.012
  • Alzu’bi, A., Amira, A., & Ramzan, N. (2017, August). Content-based image retrieval with compact deep convolutional features. Neurocomputing, 249, 95–105. https://doi.org/10.1016/j.neucom.2017.03.072
  • Arevalillo-Herráez, M., Domingo, J., & Ferri, F. J. (2008, December). Combining similarity measures in content-based image retrieval. Pattern Recognition Letters, 29(16), 2174–2181. https://doi.org/10.1016/j.patrec.2008.08.003
  • Arthur, D., & Vassilvitskii, S. (2007, January). K-means++: The advantages of careful seeding. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 07-09, 1027–1035. https://doi.org/10.5555/1283383.1283494
  • Ashraf, R., Ahmedm, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S. & Jeon, G. (2018, March). Content based image retrieval by using color descriptor and discrete Wavelet transform. Journal of Medical Systems, 42 (3), 44. https://doi.org/10.1007/s10916-017-0880-7
  • Ashraf, R., Ahmed, M., Ahmad, U., Habib, M. A., Jabbar, S., & Naseer, K. (2020, April). MDCBIR-MF: Multimedia data for content-based image retrieval by using multiple features. Multimedia Tools and Applications, 79(13–14), 8553–8579. https://doi.org/10.1007/s11042-018-5961-1
  • Ashraf, R., Bashir, K., Irtaza, A., & Mahmood, M. (2015, May). Content based image retrieval using embedded neural networks with bandletized regions. Entropy, 17(6), 3552–3580. https://doi.org/10.3390/e17063552
  • Bai, C., Chen, J., Huang, L., Kpalma, K., & Chen, S. (2018, January). Saliency-based multi-feature modeling for semantic image retrieval. Journal of Visual Communication and Image Representation, 50, 199–204. https://doi.org/10.1016/j.jvcir.2017.11.021
  • Baig, F., Mehmood, Z., Rashid, M., Javid, M. A., Rehman, A., Saba, T., & Adnan, A. (2020, March). Boosting the performance of the BoVW model using SURF–CoHOG-based sparse features with relevance feedback for CBIR. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(1), 99–118. https://doi.org/10.1007/s40998-019-00237-z
  • Bala, A., & Kaur, T. (2016, March). Local texton XOR patterns: A new feature descriptor for content-based image retrieval. International Journal of Engineering Technology and Scientific Innovation, 19(1), 101–112. https://doi.org/10.1016/j.jestch.2015.06.008
  • Banerjee, I., Kurtz, C., Devorah, A. E., Do, B., Rubin, D. L., & Beaulieu, C. F. (2018, August). Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs. Journal of Biomedical Informatics, 84, 123–135. https://doi.org/10.1016/j.jbi.2018.07.002
  • Bansal, M., Kumar, M., & Kumar, M. (2020, February). 2D object recognition techniques: State-of-the-art work. Archives of Computational Methods in Engineering, 28(3), 1147-1161. https://doi.org/10.1007/s11831-020-09409-1
  • Basheer, I., & Hajmeer, M. (2000, December). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. https://doi.org/10.1016/S0167-7012(00)00201-3
  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008, June). Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3), 346–359. https://doi.org/10.1016/j.cviu.2007.09.014
  • Bibi, R., Mehmood, Z., Yousaf, R. M., Saba, T., Sardaraz, M., & Rehman, A. (2020a, April). Query-by-visual-search: Multimodal framework for content-based image retrieval. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5629-5648. https://doi.org/10.1007/s12652-020-01923-1
  • Bibi, R., Mehmood, Z., Yousaf, R. M., Saba, T., Sardaraz, M., & Rehman, A.“SIPI-USC Brodatz texture image database.” [ Online]. University of Southern California. Available: http://sipi.usc.edu/database/database.php?volume=textures. [Accessed: 01-Jan-2020b].
  • Cha, S.-H. (2007). Comprehensive Survey on Distance Similarity measures between probability density functions. International Journal of Mathematics Model Methods Applied Sciiences, 1(4). https://www.naun.org/main/NAUN/ijmmas/mmmas-49.pdf
  • Chaudhry, S., & Chandra, R. (2016, October). Unconstrained face detection from a mobile source using convolutional neural networks. Lecture Notes in Computer Science, 9948, 567–576. Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. https://link.springer.com/chapter/10.1007%2F978-3-319-46672-9_63
  • Chun, Y. D., Kim, N. C., & Jang, I. H. (2008, October). Content-based image retrieval using multiresolution color and texture features. IEEE Transactions on Multimedia, 10(6), 1073–1084. https://doi.org/10.1109/TMM.2008.2001357
  • Ciocca, G., & Schettini, R. (1999, September). A relevance feedback mechanism for content-based image retrieval. Information Processing & Management, 35(5), 605–632. https://doi.org/10.1016/S0306-4573(99)00021-7
  • Cortes, C., & Vapnik, V. (1995, September). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Cross, G. R., & Jain, A. K. (1983, January). Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5(1), 25–39. https://doi.org/10.1109/TPAMI.1983.4767341
  • Cula, O. G., & Dana, K. J. (2004). 3D texture recognition using bidirectional feature histograms. International Journal of Computer Vision, 59(1), 33–60. https://doi.org/10.1023/B:VISI.0000020670.05764.55
  • Dalal, N., & Triggs, B., “Histograms of oriented gradients for human detection,” In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 2005. San Diego, CA.
  • Das, R., Thepade, S., Bhattacharya, S., & Ghosh, S. (2016). Retrieval architecture with classified query for content based image recognition. Applied Computer Intellegent Software Computers, 2016, 1–9. doi: 10.1155/2016/1861247
  • Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008, April). Image retrieval. ACM Computing Surveys, 40(2), 1–60. https://doi.org/10.1145/1348246.1348248
  • Duanmu, X., “Image retrieval using color moment invariant,” in 2010 Seventh International Conference on Information Technology: New Generations, 2010, pp. 200–203. Las Vegas, Nevada.
  • ElAdel, A., Ejbali, R., Zaied, M., & Ben Amar, C. (2016, August). A hybrid approach for content-based image retrieval based on fast beta wavelet network and fuzzy decision support system. Machine Vision and Applications, 27(6), 781–799. https://doi.org/10.1007/s00138-016-0789-z
  • Fei-Fei, L., Fergus, R., & Perona, P. (2007, April). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1), 59–70. https://doi.org/10.1016/j.cviu.2005.09.012
  • Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., .. Yanker, P. (1995). Query by image and video content: The QBIC system. Computer (Long. Beach. Calif), 28(9), 23–32. http://ieeexplore.ieee.org/document/410146/
  • Forssén, P. E., & Lowe, D. G. (2007). Shape descriptors for maximally stable extremal regions. Proceedings / IEEE International Conference on Computer Vision, 0–7. DOI: 10.1109/ICCV.2007.4409025
  • Fowler, B. (2000, February). A Sociological Analysis of the Satanic Verses Affair. Theory, Culture & Society, 17(1), 39–61. https://doi.org/10.1177/02632760022050997
  • Garg, M., & Dhiman, G. (2020, June). A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Computing & Applications, 33(4), 1311-1328. DOI: 10.1007/s00521-020-05017-z
  • Ghosh, N., Agrawal, S., & Motwani, M. 2018. A survey of feature extraction for content-based image retrieval system. Lecture notes in networks and systems (Vol. 34 305–313).Springer. https://doi.org/10.1007/978-981-10-8198-9_32
  • Ghrabat, M. J. J., Ma, G., Maolood, I. Y., Alresheedi, S. S., & Abduljabbar, Z. A. (2019, December). An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier. Human-centric Computing and Information Sciences, 9(1), 31. https://doi.org/10.1186/s13673-019-0191-8
  • Gogul, I., & Kumar, V. S., “Flower species recognition system using convolution neural networks and transfer learning,” in 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), 2017, no. March, pp. 1–6. Chennai, India.
  • Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Caltech mimeo, 11(1), 20. https://authors.library.caltech.edu/7694/
  • Guo, Z., Zhang, L., & Zhang, D. (2010, March). Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognition, 43(3), 706–719. https://doi.org/10.1016/j.patcog.2009.08.017
  • Haji, M. S., Alkawaz, M. H., Rehman, A., & Saba, T. (2019). Content-based image retrieval: A deep look at features prospectus. International Journal of Computational Vision and Robotics, 9(1), 14. https://doi.org/10.1504/IJCVR.2019.098004
  • Halawani, A. H., Teynor, A., Setia, L., Brunner, G., & Retrieval, C. I. (2006, January). Fundamentals and Applications of Image Retrieval : An Overview. Image (Rochester, N.Y.), 14–23.
  • Harris, C., & Stephens, M., “A combined corner and edge detector,” In Procedings of the Alvey Vision Conference 1988, 1988, pp. 23.1–23.6. Manchester, UK.
  • Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28(1), 100. https://doi.org/10.2307/2346830
  • Hawlick, R. M. (2017). Statistical and structural approaches to texture. Advances in Intelligent Systems and Computing, 459(5), 1–644. doi: 10.1109/PROC.1979.11328
  • Howarth, P., & Rüger, S. (2005). Fractional distance measures for content-based image retrieval. 447–456. doi: 10.1007/978-3-540-31865-1_32
  • Huang, J., Kumar, S. R., Mitra, M., Zhu, W.-J., & Zabih, R., “Image indexing using color correlograms,” in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on, 1997, pp. 762–768. San Juan, PR.
  • Idan, Z. N., Abdulhussain, S. H., & Al-Haddad, S. A. R. (2020). A new separable moments based on tchebichef-krawtchouk polynomials. IEEE Access, 8, 41013–41025. https://doi.org/10.1109/ACCESS.2020.2977305
  • Jabeen, S., Mehmood, Z., Mahmood, T., Saba, T., Rehman, A., Mahmood, M. T., & Rubin, D. L. (2018, April). An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model. PLoS One, 13(4), e0194526. https://doi.org/10.1371/journal.pone.0194526
  • Jacobs, C. E., Finkelstein, A., & Salesin, D. H., “Fast multiresolution image querying,” in Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH ’95, New York, USA, 1995, pp. 277–286.
  • Jain, M., Jégou, H., & Gros, P., “Asymmetric hamming embedding,” in Proceedings of the 19th ACM international conference on Multimedia - MM ’11, New York, USA, 2011, no. May, p. 1441.
  • Jenni, K., Mandala, S., & Sunar, M. S. (2015). Content based image retrieval using colour strings comparison. Procedia Computer Science, 50, 374–379. https://doi.org/10.1016/j.procs.2015.04.032
  • Kokare, M., Chatterji, B. N., & Biswas, P. K. (2002, May). A survey on current content based image retrieval methods. IETE Journal of Research, 48(3–4), 261–271. https://doi.org/10.1080/03772063.2002.11416285
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017, May). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
  • Lance, G. N., & Williams, W. T. (1966, May). Computer programs for hierarchical polythetic classification (‘Similarity Analyses’). The Computer Journal, 9(1), 60–64. https://doi.org/10.1093/comjnl/9.1.60
  • Lance, G. N., & Williams, W. T. (1967). Mixed-data classificatory programs i - agglomerative systems. Australian Computer Journal, 1(1), 15–20. https://www.semanticscholar.org/paper/Mixed-Data-Classificatory-Programs-I-Agglomerative-Lance-Williams/4072b6353dd761ba0c219a4b860073f08bb3db27
  • Latif, A., Rasheed, A., Sajid, U., Ahmed, J., Ali, N., Ratyal, N. I., Zafar, B., Dar, S. H., Sajid, M., & Khalil, T. (2019, August). Content-based image retrieval and feature extraction: a comprehensive review. Mathematical Problems in Engineering, 1–21. https://doi.org/10.1155/2019/9658350
  • Lazebnik, S., Schmid, C., & Ponce, J., “Beyond bags of features: spatial pyramid matching for recognizing natural scene categories,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06), New York, USA, 2006, vol. 2, pp. 2169–2178.
  • Leutenegger, S., Chli, M., & Siegwart, R. Y., “BRISK: Binary Robust invariant scalable keypoints,” in 2011 International Conference on Computer Vision, Barcelona, Spain, 2011, pp. 2548–2555.
  • Li, H., Qin, J., Xiang, X., Pan, L., Ma, W., & Xiong, N. N. (2018). An efficient image matching algorithm based on adaptive threshold and RANSAC. IEEE Access, 6, 66963–66971. https://doi.org/10.1109/ACCESS.2018.2878147
  • Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 286–299. https://doi.org/10.1109/TPAMI.2007.41
  • Liu, P., Guo, J.-M., Wu, C.-Y., & Cai, D. (2017, December). Fusion of deep learning and compressed domain features for content-based image retrieval. The Computer Journal, 26(12), 5706–5717. https://doi.org/10.1109/TIP.2017.2736343
  • Liu, Y., Zhang, D., Lu, G., & Ma, W.-Y. (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1), 262–282. https://doi.org/10.1016/j.patcog.2006.04.045
  • Low, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  • Mahmmod, B. M., Abdul-Hadi, A. M., Abdulhussain, S. H., & Hussien, A. (2020, August). On computational aspects of Krawtchouk polynomials for high orders. Journal of Imaging, 6(8), 81. https://doi.org/10.3390/jimaging6080081
  • Makhoul, J., Kubala, F., Schwartz, R., & Weischedel, R. (1999, February). Performance measures for information extraction. In Proc. DARPA broadcast news work. (pp. 249–252).
  • Manjunath, B. S., Ohm, J.-R., Vasudevan, V. V., & Yamada, A. (2001, June). Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6), 703–715. https://doi.org/10.1109/76.927424
  • Markowska-Kaczmar, U., & Kwaśnicka, H. (2018). Deep learning—a new era in bridging the semantic gap. Intelligent Systems Reference Library, 145, 123–159. doi: 10.1007/978-3-319-73891-8_7
  • Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5), 530–549. https://doi.org/10.1109/TPAMI.2004.1273918
  • Marxsen, S., Hilbert, D., Laubenbacher, R., Sturmfels, B., David, H., & Laubenbacher, R. C. (1993). Theory of algebraic invariants. Cambridge University Press.
  • Mehmood, Z., Abbas, F., Mahmood, T., Javid, M. A., Rehman, A., & Nawaz, T. (2018, December). Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arabian Journal for Science and Engineering, 43(12), 7265–7284. https://doi.org/10.1007/s13369-018-3062-0
  • Mehmood, Z., Anwar, S. M., Ali, N., Habib, H. A., & Rashid, M. (2016). A novel image retrieval based on a combination of local and global histograms of visual words. Mathematical Problems in Engineering, 2016, 1–12. https://doi.org/10.1155/2016/8217250
  • Mittal, U., Srivastava, S., & Chawla, P., “Review of different techniques for object detection using deep learning,” in Proceedings of the Third International Conference on Advanced Informatics for Computing Research - ICAICR ’19, New York, USA, 2019, pp. 1–8.
  • Montazer, G. A., & Giveki, D. (2015, September). Content based image retrieval system using clustered scale invariant feature transforms. Optik (Stuttg), 126(18), 1695–1699. https://doi.org/10.1016/j.ijleo.2015.05.002
  • Naeem, M., Ashraf, R., Ali, N., Ahmad, M., & Habib, M. A., “Bottom up approach for better requirements elicitation,” in Proceedings of the International Conference on Future Networks and Distributed Systems - ICFNDS ’17, New York, USA, 2017, 1305, pp. 1–4.
  • Nazir, A., Ashraf, R., Hamdani, T., & Ali, N., “Content based image retrieval system by using HSV color histogram, discrete wavelet transform and edge histogram descriptor,” in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2018, January, pp. 1–6.
  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002, July). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987. https://doi.org/10.1109/TPAMI.2002.1017623
  • Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175. https://doi.org/10.1023/A:1011139631724
  • Otsu, N. (1979, January). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076
  • Öztürk, Ş. (2020, December). Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Systems with Applications, 161, 113693. https://doi.org/10.1016/j.eswa.2020.113693
  • Patil, A., & Rane, M. (2021). Convolutional neural networks: an overview and its applications in pattern recognition. In Smart Innovation, Systems and Technologies, 195(Insights into Imaging), 21–30. DOI: 10.1007/978-981-15-7078-0_3
  • Pavithra, L. K., & Sharmila, T. S. (2018, August). An efficient framework for image retrieval using color, texture and edge features. Computers & Electrical Engineering, 70, 580–593. https://doi.org/10.1016/j.compeleceng.2017.08.030
  • Pavithra, L. K., & Sree Sharmila, T. (2019, December). An efficient seed points selection approach in dominant color descriptors (DCD). Cluster Computing, 22(4), 1225–1240. https://doi.org/10.1007/s10586-019-02907-3
  • Pele, O., & Werman, M. (2010). The quadratic-chi histogram distance family. Lecture Notes in Computer Science, 6312 (2), 749–762. Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. DOI: 10.1007/978-3-642-15552-9_54
  • Perronnin, F., Douze, M., Pe, P., Schmid, C., & Sa, J. (2012). Aggregating local image descriptors into compact codes. Analysis, 34(9), 1704–1716. https://doi.org/10.1109/TPAMI.2011.235
  • Phadikar, B. S., Phadikar, A., & Maity, G. K. (2018, May). Content-based image retrieval in DCT compressed domain with MPEG-7 edge descriptor and genetic algorithm. Pattern Analysis and Applications, 21(2), 469–489. https://doi.org/10.1007/s10044-016-0589-0
  • Piras, L., & Giacinto, G. (2017, September). Information fusion in content based image retrieval: A comprehensive overview. Information Fusion, 37, 50–60. https://doi.org/10.1016/j.inffus.2017.01.003
  • Ponomarev, A., Nalamwar, H. S., Babakov, I., Parkhi, C. S., & Buddhawar, G. (2016, February). Content-based image retrieval using color, texture and shape features. Key Engineering Materials, 685, 872–876. https://doi.org/10.4028/www.scientific.net/KEM.685.872
  • Qin, J., Li, H., Xiang, X., Tan, Y., Pan, W., Ma, W., & Xiong, N. N. (2019). An encrypted image retrieval method based on harris corner optimization and LSH in cloud computing. IEEE Access, 7, 24626–24633. https://doi.org/10.1109/ACCESS.2019.2894673
  • Qiu, G. (2003, January). Color image indexing using BTC. IEEE Transactions on Image Processing, 12(1), 93–101. https://doi.org/10.1109/TIP.2002.807356
  • Raghunathan, B., & Acton, S. T., “A content based retrieval engine for circuit board inspection,” in Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), vol. 1, pp. 104–108 1999. Kobe, Japan.
  • Rana, S. P., Dey, M., & Siarry, P. (2019, January). Boosting content based image retrieval performance through integration of parametric & nonparametric approaches. Journal of Visual Communication and Image Representation, 58(3), 205–219. https://doi.org/10.1016/j.jvcir.2018.11.015
  • Raza, A., Dawood, H., Dawood, H., Shabbir, S., Mehboob, R., & Banjar, A. (2018). Correlated primary visual texton histogram features for content base image retrieval. IEEE Access, 6, 46595–46616. https://doi.org/10.1109/ACCESS.2018.2866091
  • Raza, A., Nawaz, T., Dawood, H., & Dawood, H. (2019). Square texton histogram features for image retrieval. Multimedia Tools and Applications, 78(3), 2719–2746. https://doi.org/10.1007/s11042-018-5795-x
  • Rosten, E., Porter, R., & Drummond, T., “Faster and better: A machine learning approach to corner detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–119, January. 2010. Hannover, Germany. https://doi.org/10.1109/TPAMI.2008.275
  • Rui, H. S., Ruger, D. S., Liu, H., & Huang, Z., “Dissimilarity measures for content-based image retrieval,” In 2008 IEEE International Conference on Multimedia and Expo, Hannover, Germany, 2008, pp. 1365–1368.
  • Sajjad, M., Ullah, A., Ahmad, J., Abbas, N., Rho, S., & Baik, S. W. (2018, February). Integrating salient colors with rotational invariant texture features for image representation in retrieval systems. Multimedia Tools and Applications, 77(4), 4769–4789. https://doi.org/10.1007/s11042-017-5010-5
  • Salve, S. G., & Jondhale, K. C. (2010). Shape matching and object recognition using shape contexts. Proceedings - 2010 3rd IEEE International Conference Computer Science Information Technology ICCSIT 2010, 9, 471–474. DOI: 10.1109/ICCSIT.2010.5565098
  • Sammut, C., & Webb, G. I. (Eds.). (2017). Encyclopedia of machine learning and data mining. Springer US.
  • Sánchez, J., Monzón, N., & Salgado, A. (2018, October). An analysis and implementation of the harris corner detector. Image Processing Line, 8(9), 305–328. DOI: 10.5201/ipol.2018.229
  • Sarwar, A., Mehmood, Z., Saba, T., Qazi, K. A., Adnan, A., & Jamal, H. (2019, February). A novel method for content-based image retrieval to improve the effectiveness of the bag-of-words model using a support vector machine. Journal of Information Science, 45(1), 117–135. https://doi.org/10.1177/0165551518782825
  • Sergyan, S., “Color histogram features based image classification in content-based image retrieval systems,” in 2008 6th International Symposium on Applied Machine Intelligence and Informatics, Herlany, Slovakia, 2008, pp. 221–224.
  • Sezavar, A., Farsi, H., & Mohamadzadeh, S. (2019, August). Content-based image retrieval by combining convolutional neural networks and sparse representation. Multimedia Tools and Applications, 78(15), 20895–20912. https://doi.org/10.1007/s11042-019-7321-1
  • Shamna, P., Govindan, V. K., & Abdul Nazeer, K. A. (2019, March). Content based medical image retrieval using topic and location model. Journal of Biomedical Informatics, 91, 103112. https://doi.org/10.1016/j.jbi.2019.103112
  • Sharif, U., Mehmood, Z., Mahmood, T., Javid, M. A., Rehman, A., & Saba, T. (2019, August). Scene analysis and search using local features and support vector machine for effective content-based image retrieval. Artificial Intelligence Review, 52(2), 901–925. https://doi.org/10.1007/s10462-018-9636-0
  • Sharmi, N., Mohamed Shameem, P., & Parvathy, R. (2018). Content-based image retrieval using fast machine learning approach in cloud computing. In Communications in computer and information science (Vol. 837, pp. 434–444). Elsevier: Springer Singapore.
  • Shrivastava, N., & Tyagi, V. (2015, August). An efficient technique for retrieval of color images in large databases. Computers & Electrical Engineering, 46, 314–327. https://doi.org/10.1016/j.compeleceng.2014.11.009
  • Shrivastava, N., & Tyagi, V. (2017, December). Corrigendum to “Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching” [Information Sciences 259 (2014) 212–224]. Information Sciences, 421, 273. https://doi.org/10.1016/j.ins.2017.09.017
  • Simonyan, K., & Zisserman, A. (2014, September). Very deep convolutional networks for large-scale image recognition. 3rd International Conference Learning Represent ICLR 2015 - Conference Track Proceedings, 1–14.
  • Song, W., Zhang, Y., Liu, F., Chai, Z., Ding, F., Qian, X., & Park, S. C. (2018, April). Taking advantage of multi-regions-based diagonal texture structure descriptor for image retrieval. Expert Systems with Applications, 96, 347–357. https://doi.org/10.1016/j.eswa.2017.12.006
  • Srivastava, P., & Khare, A. (2017, January). Integration of wavelet transform, local binary patterns and moments for content-based image retrieval. Journal of Visual Communication and Image Representation, 42, 78–103. https://doi.org/10.1016/j.jvcir.2016.11.008
  • Su, J.-H., Huang, W.-J., Yu, P. S., & Tseng, V. S. (2011, March). Efficient relevance feedback for content-based image retrieval by mining user navigation patterns. IEEE Transactions on Knowledge and Data Engineering, 23(3), 360–372. https://doi.org/10.1109/TKDE.2010.124
  • Suk, T., & Flusser, J. (2011, September). Affine moment invariants generated by graph method. Pattern Recognition, 40(2), 2047–2056. https://doi.org/10.1016/j.patcog.2010.05.015
  • Swain, M. J., & Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1), 11–32. https://doi.org/10.1007/BF00130487
  • Tadi Bani, N., & Fekri-Ershad, S. (2019, August). Content-based image retrieval based on combination of texture and colour information extracted in spatial and frequency domains. Electronic Library, 37(4), 650–666. https://doi.org/10.1108/EL-03-2019-0067
  • Tao, D., Tang, X., Xuelong, L., & Rui, Y. (2006, August). Direct kernel biased discriminant analysis: A new content-based image retrieval relevance feedback algorithm. IEEE Transactions on Multimedia, 8(4), 716–727. https://doi.org/10.1109/TMM.2005.861375
  • Tarawneh, A. S., Celik, C., Hassanat, A. B., & Chetverikov, D. (2020, February). Detailed investigation of deep features with sparse representation and dimensionality reduction in CBIR: A comparative study. Intelligent Data Analysis, 24(1), 47–68. https://doi.org/10.3233/IDA-184411
  • Thusnavis Bella, M. I., & Vasuki, A. (2019, May). An efficient image retrieval framework using fused information feature. Computers & Electrical Engineering, 75, 46–60. https://doi.org/10.1016/j.compeleceng.2019.01.022
  • Tian, D. (2018). Support vector machine for content-based image retrieval: A comprehensive overview. Journal Information Hiding Multimedia Signal Processing, 9(6), 1464–1478. http://bit.kuas.edu.tw/~jihmsp/2018/vol9/Number6/JIH-MSP-2018-11-011.pdf
  • Tian, D. P. (2013). A review on image feature extraction and representation techniques. International Journal Multimedia Ubiquitous Engineering, 8(4), 385–395. https://gvpress.com/journals/IJMUE/vol8_no4/39.pdf
  • Tsai, C.-F. (2012). Bag-of-words representation in image annotation: A review. ISRN Artificial Intelligence, 2012, 1–19. https://doi.org/10.5402/2012/376804
  • Tyagi, V. (2017). Similarity measures and performance evaluation. In Content-based image retrieval (pp. 63–83). Springer Singapore.
  • Tzelepi, M., & Tefas, A. (2018, January). Deep convolutional learning for content based image retrieval. Neurocomputing, 275, 2467–2478. https://doi.org/10.1016/j.neucom.2017.11.022
  • Varma, M., & Zisserman, A. (2009). CUReT1. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2032–2047. https://doi.org/10.1109/TPAMI.2008.182
  • Vedaldi, A., & Zisserman, A., “Sparse kernel approximations for efficient classification and detection,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 2320–2327.
  • Vimina, E. R., & Divya, M. O. (2020, September). Maximal multi-channel local binary pattern with colour information for CBIR. Multimedia Tools and Applications, 79(35–36), 25357–25377. https://doi.org/10.1007/s11042-020-09207-8
  • Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018, 1–13. DOI: 10.1155/2018/7068349
  • Wan, J., “Deep learning for content-based image retrieval,” In Proceedings of the ACM International Conference on Multimedia - MM ’14, New York, USA, 2014, pp. 157–166.
  • Wang, J. Z., Li, J., & Wiederholdy, G. (2000). SIMPLIcity: Semantics-sensitive Integrated Matching for Picture LIbraries. Lecture Notes in Computer Science, 1929 (9), 360–371. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). DOI: 10.1007/3-540-40053-2_32
  • Wang, Z., Fan, B., & Wu, F., “Local intensity order pattern for feature description,” in 2011 International Conference on Computer Vision, 2011, no. May, pp. 603–610. New York, USA.
  • Watanabe, T., Ito, S., & Yokoi, K. (2010). Co-occurrence histograms of oriented gradients for human detection. IPSJ Transactions on Computer Vision and Applications, 2, 39–47. https://doi.org/10.2197/ipsjtcva.2.39
  • Won, C. S. W., Park, D. K. P., & Park, S.-J. P. (2002, February). Efficient use of MPEG-7 edge histogram descriptor. ETRI Journal, 24(1), 23–30. https://doi.org/10.4218/etrij.02.0102.0103
  • Wu, G.-D., & Huang, P.-H. (2013, February). A Vectorization-optimization-method-based type-2 fuzzy neural network for noisy data classification. IEEE Transactions on Fuzzy Systems, 21(1), 1–15. https://doi.org/10.1109/TFUZZ.2012.2197754
  • Xu, D., Cham, T. J., Yan, S., Duan, L., & Chang, S. (2010). Aligned pyramid matching. IEEE Transactions on Circuits and Systems, 20(8), 1068–1079. https://doi.org/10.1109/TCSVT.2010.2051286
  • Xu, Y., Zhao, X., & Gong, J. (2019). A large-scale secure image retrieval method in cloud environment. IEEE Access, 7, 160082–160090. https://doi.org/10.1109/ACCESS.2019.2951175
  • Yang, H.-F., Lin, K., & Chen, C.-S. (2018, February). Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2), 437–451. https://doi.org/10.1109/TPAMI.2017.2666812
  • Yoon, H., Park, C.-S., Kim, J. S., & Baek, J.-G. (2013, January). Algorithm learning based neural network integrating feature selection and classification. Expert Systems with Applications, 40(1), 231–241. https://doi.org/10.1016/j.eswa.2012.07.018
  • Younus, Z. S., Mohamad, D., Saba, T., Alkawaz, H. M., Rehman, A., Al-Rodhaan, M., Al-Dhelaan, A. (2015, August). Content-based image retrieval using PSO and k-means clustering algorithm. Arabic Journal Geoscience, 8(8), 6211–6224. doi: 10.1007/s12517-014-1584-7
  • Yousuf, M., Mehmood, Z., Habib, H. A., Mahmood, T., Saba, T., Rehman, A., & Rashid, M. (2018). A novel technique based on visual words fusion analysis of sparse features for effective content-based image retrieval. Mathematical Problems in Engineering, 2018, 1–13. https://doi.org/10.1155/2018/2134395
  • Zhang, D., Islam, M. M., & Lu, G. (2012, January). A review on automatic image annotation techniques. Pattern Recognition, 45(1), 346–362. https://doi.org/10.1016/j.patcog.2011.05.013
  • Zhang, D., & Lu, G., “A comparative study on shape retrieval using Fourier descriptiors with different shape signatures,” in Intelligent Multimedia, Computing and Communications: Technologies and Applications of the Future: Proceedings of the International Conference on Intellient Multimedia and Distance Education, 2001, pp. 1–9.
  • Zhang, D., & Lu, G. (2004, January). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19. https://doi.org/10.1016/j.patcog.2003.07.008
  • Zhang, J., Marszałek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computational Vision and Robotics, 73(2), 213–238. https://doi.org/10.1007/s11263-006-9794-4
  • Zhao, M., Zhang, H., & Sun, J. (2016, July). A novel image retrieval method based on multi-trend structure descriptor. Journal of Visual Communication and Image Representation, 38, 73–81. https://doi.org/10.1016/j.jvcir.2016.02.016
  • Zhao, Z., Tian, Q., Sun, H., Jin, X., & Guo, J. (2016, January). Content based image retrieval scheme using color, texture and shape features. International Journal of Signal Processing Image Processing Pattern Recognition, 9(1), 203–212. doi: 10.14257/ijsip.2016.9.1.19
  • Zheng, Q., Tian, X., Yang, M., & Wang, H. (2019). Differential learning: A powerful tool for interactive content-based image retrieval. Engineering Letters, 27(1), 202–215. http://www.engineeringletters.com/issues_v27/issue_1/EL_27_1_23.pdf
  • Zheng, X., Tang, B., Gao, Z., Liu, E., & Luo, W. (2016, November). Study on image retrieval based on image texture and color statistical projection. Neurocomputing, 215, 217–224. https://doi.org/10.1016/j.neucom.2015.07.157
  • Zhuo, L., Cheng, B., & Zhang, J. (2014). A comparative study of dimensionality reduction methods for large-scale image retrieval. Neurocomputing, 141, 202–210. https://doi.org/10.1016/j.neucom.2014.03.014