1,286
Views
1
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Experimental characterization of track ballast under triple-fouling condition: Evidence from selected Nigerian Railways

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1932240 | Received 06 Mar 2021, Accepted 15 May 2021, Published online: 01 Jun 2021

References

  • Aggregate for Railway Ballast. (2009). Technical Note 75 1. Cement Concrete & Aggregate Australia.
  • Alemu, A. Y. (2011). Survey of railway ballast selection and aspects of modelling techniques [Royal Institute of Technology]. (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-87466
  • AREMA: Manual for Railway Engineering. (2010). Vol. 1: Track, Ch. 1: Roadway and Ballast, American Railway Engineering and Maintenance of Way Association (AREMA).
  • AS 2758.1. (2009). The requirements of Concrete aggregates, Technical Note 73 1. Cement Concrete & Aggregate Australia.
  • ASTM C136/C136M-19. (2019). Standard test method for sieve analysis of fine and coarse aggregates. ASTM International, West Conshohocken, PA, https://doi.org/10.1520/C0136_C0136M-19
  • ASTM C535. (2016). Standard test method for resistance to degradation of large-size coarse aggregate by abrasion and impact in the los angeles machine. ASTM StandardsASTM International, West Conshohocken, PA, https://www.astm.org/Standards/C535.htm
  • ASTM D2434. (2019). Standard test method for permeability of granular soils (constant head). ASTM International, West Conshohocken, PA, https://www.astm.org/Standards/D2434
  • Auersch, L. (2006). Dynamic axle loads on tracks with and without ballast mats: Numerical results of three-dimensional vehicle-track-soil models. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(2), 169–21. https://doi.org/10.1243/09544097F00105
  • Ayoola, T. A. (2016). Establishment of the Nigerian Railway Corporation. Journal of Retracing Africa, 3(1), 21–42. https://encompass.eku.edu/jora/vol3/iss1/4
  • Bassey, D., Ngene, B., Akinwumi, I., Akpan, V., & Bamigboye, G. (2020). Ballast contamination mechanisms: A criterial review of characterisation and performance indicators. Infrastructures, 5(11), 94. https://doi.org/10.3390/infrastructures5110094
  • Bergado, D. T., Balasubramaniam, A. S., Fannin, R. J., & Holtz, R. D. (2002). Prefabricated vertical drains (PVDs) in soft Bangkok clay: A case study of the new Bangkok International Airport project. Canadian Geotechnical Journal, 39(2), 304–315. https://doi.org/10.1139/t01-100
  • Bian, X., Huang, H., Tutumluer, E., & Gao, Y. (2016). “Critical particle size” and ballast gradation studied by Discrete Element Modeling. Transportation Geotechnics, 6, 38–44. https://doi.org/10.1016/j.trgeo.2016.01.002
  • Brough, M., Stirling, A., Ghataora, G., & Madelin, K. (2003). Evaluation of railway trackbed and formation: A case study. NDT and E International, 36(3SPEC), 145–156. https://doi.org/10.1016/S0963-8695(02)00053-1
  • BS EN 13450. (2013). Aggregate for railway ballast. British Standards Institute.
  • Chen, Y. (2018). China’s role in Nigerian Railway development and implications for security and development. In United States Institute of Peace: Special Report (Issue 423). United States Institute of Peace. www.usip.org
  • Correia, G. A. (2001). Soils mechanics in routine and advanced pavement and rail track rational design. In Geotechnics for roads, rail tracks and earth structures (pp. 165–187). A. A. Balkema, Lisse. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14573341
  • Correia, G. A., & Cunha, J. (2014). Analysis of nonlinear soil modelling in the subgrade and rail track responses under HST. Transportation Geotechnics, 1(4), 147–156. https://doi.org/10.1016/j.trgeo.2014.07.003
  • Cui, Y. J., Duong, T. V., Tang, A. M., Dupla, J. C., Calon, N., & Robinet, A. (2013). Investigation of the hydro-mechanical behaviour of fouled ballast. Journal of Zhejiang University: Science A, 14(4), 244–255. https://doi.org/10.1631/jzus.A1200337
  • De Bold, R., Connolly, D. P., Patience, S., Lim, M., & Forde, M. C. (2021). Using impulse response testing to examine ballast fouling of a railway trackbed. Construction and Building Materials, 274, 121888. https://doi.org/10.1016/j.conbuildmat.2020.121888
  • De Paiva, C. E. L., Pereira, M. L., & Pimentel, L. L. (2017). Study of railway ballast fouling by abrasion-originated particles. Railway Engineering, 2004. https://doi.org/10.25084/raileng.2017.0074
  • Ebrahimi, A., Tinjum, J. M., & Edil, T. B. (2012). Protocol for testing fouled railway ballast in large-scale cyclic triaxial equipment. Geotechnical Testing Journal, 35(5), 5. https://doi.org/10.1520/GTJ103846
  • Giannakos, K. (2010). Loads on Track, Ballast Fouling, and Life Cycle under Dynamic Loading in Railways. Journal of Transportation Engineering, 136(12), 1075–1084. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000182
  • Huang, H., Tutumluer, E., & Dombrow, W. (2009). Laboratory characterization of fouled railroad ballast behavior. Transportation Research Record, 2117(1), 93–101. https://doi.org/10.3141/2117-12
  • Indian Railway Standards. (2004). IRS-GE-1: specifications for track ballast (Issue 1). https://ecr.indianrailways.gov.in/uploads/files/1366518435624-GE-IRS-1.pdf
  • Indraratna, B., & Redana, I. W. (2000). Numerical modeling of vertical drains with smear and well resistance installed in soft clay. Canadian Geotechnical Journal, 37(1), 132–145. https://doi.org/10.1139/t99-115
  • Indraratna, B. (2016). 1st Proctor Lecture of ISSMGE : Railroad performance with special reference to ballast and substructure characteristics. Transportation Geotechnics, 7, 74–114. https://doi.org/10.1016/j.trgeo.2016.05.002
  • Indraratna, B., Attya, A., & Rujikiatkamjorn, C. (2009). Experimental Investigation on Effectiveness of a Vertical Drain under Cyclic Loads. Journal of Geotechnical and Geoenvironmental Engineering, 135(6), 835–839. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000006
  • Indraratna, B., Navaratnarajah, S., Nimbalkar, S., & Rujikiatkamjorn, C. (2014). Use of shock mats for enhanced stability of railroad track foundation. Australian Geomechanics Journal, 49(4), 101–110. https://ro.uow.edu.au/eispapers/3424
  • Indraratna, B., Nimbalkar, S., Coop, M., & Sloan, S. W. (2014). A constitutive model for coal-fouled ballast capturing the effects of particle degradation. Computers and Geotechnics, 61, 96–107. https://doi.org/10.1016/j.compgeo.2014.05.003
  • Indraratna, B., Nimbalkar, S., & Neville, T. (2014). Performance assessment of reinforced ballasted rail track. Proceedings of the Institution of Civil Engineers - Ground Improvement, 167(1), 24–34. https://doi.org/10.1680/grim.13.00018
  • Indraratna, B., Nimbalkar, S., & Rujikiatkamjorn, C. (2014a). Enhancement of rail track performance through utilisation of geosynthetic inclusions. Geotechnical Engineering, 45(1), 17–27. https://ro.uow.edu.au/eispapers/2145
  • Indraratna, B., Nimbalkar, S., & Rujikiatkamjorn, C. (2014b). From theory to practice in track geomechanics - Australian perspective for synthetic inclusions. Transportation Geotechnics, 1(4), 171–187. https://doi.org/10.1016/j.trgeo.2014.07.004
  • Indraratna, B., Nimbalkar, S. S., Navaratnarajah, S. K., Rujikiatkamjorn, C., & Neville, T. (2014). Use of shock mats for mitigating degradation of railroad ballast. Sri Lankan Geotechnical Journal -special Issue on Ground Improvement, 6(1), 32–41. https://ro.uow.edu.au/eispapers/4943
  • Indraratna, B., Nimbalkar, S. S., & Tennakoon, N. (2010). The behaviour of ballasted track foundations: Track drainage and geosynthetic reinforcement. GeoFlorida, (2010, 2378–2387. https://doi.org/10.1061/41095(365)241
  • Indraratna, B., & Salim, W. (2005). Mechanics of ballasted rail tracks: A geotechnical perspective. Taylor & Francis.
  • Indraratna, B., Sun, Y., & Nimbalkar, S. (2016). Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(7), 04016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463
  • Jenkins, H. H., Stephenson, J. E., Clayton, G. A., Morland, G. W., & Lyon, D. (1974). The effect of track and vehicle parameters on wheel/rail vertical dynamic forces. Railway Engineering Journal, 3(1), 2-16. https://www.scinapse.io/papers/133468534
  • Koohmishi, M. (2019). Drainage potential of degraded railway ballast considering initial gradation and intrusion of external fine materials. Soils and Foundations, 59(6), 2265–2278. https://doi.org/10.1016/j.sandf.2019.12.011
  • Lackenby, J., Indraratna, B., McDowell, G., & Christie, D. (2007). Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. Géotechnique, 57(6), 527–536. https://doi.org/10.1680/geot.2007.57.6.527
  • Le Pen, L., Watson, G., Powrie, W., Yeo, G., Weston, P., & Roberts, C. (2014). The behaviour of railway level crossings: Insights through field monitoring. Transportation Geotechnics, 1(4), 201–213. https://doi.org/10.1016/j.trgeo.2014.05.002
  • Li, D., & Davis, D. (2005). Transition of Railroad Bridge Approaches. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1392–1398. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1392)
  • Liu, J., & Xiao, J. (2010). Experimental study on the stability of railroad silt subgrade with increasing train speed. Journal of Geotechnical and Geoenvironmental Engineering, 136(6), 833–841. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000282
  • Nimbalkar, S., Indraratna, B., Dash, S. K., & Christie, D. (2012). Improved performance of railway ballast under impact loads using shock mats. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 281–294. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000598
  • Oshin, O. (1991). Road transport and the declining fortunes of the Nigerian Railway, 1901-1950. Journal of Transport History, 12(1), 11–36. https://doi.org/10.1177/002252669101200102
  • Paiva, C., Ferreira, M., & Ferreira, A. (2015). Ballast drainage in Brazilian railway infrastructures. Construction and Building Materials, 92, 58–63. https://doi.org/10.1016/j.conbuildmat.2014.06.006
  • Preteseille, M., Lenoir, T., & Hornych, P. (2013). Sustainable upgrading of fine-grained soils present in the right-of-way of High Speed Rail projects. Construction and Building Materials, 44, 48–53. https://doi.org/10.1016/j.conbuildmat.2013.03.022
  • Qi, S., Cui, Y.-J., Chen, R.-P., Wang, H.-L., Lamas-Lopez, F., Aimedieu, P., Dupla, J.-C., Canou, J., & Saussine, G. (2020). Influence of grain size distribution of inclusions on the mechanical behaviours of track-bed materials. Géotechnique, 70(3), 238–247. https://doi.org/10.1680/jgeot.18.P.047
  • Qi, S., Cui, Y. J., Dupla, J. C., Chen, R. P., Wang, H. L., Su, Y., Lamas-Lopez, F., & Canou, J. (2020). Investigation of the parallel gradation method based on the response of track-bed materials under cyclic loadings. Transportation Geotechnics, 24, 100360. https://doi.org/10.1016/j.trgeo.2020.100360
  • Qian, Y., Boler, H., Moaveni, M., Tutumluer, E., Hashash, Y. M. A., & Ghaboussi, J. (2017). Degradation-related changes in ballast gradation and aggregate particle morphology. Journal of Geotechnical and Geoenvironmental Engineering, 143(8), 04017032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001706
  • Sadeghi, J., Motieyan-Najar, M. E., Zakeri, J. A., Yousefi, B., & Mollazadeh, M. (2018). Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions. Journal of Applied Geophysics, 151, 263–273. https://doi.org/10.1016/j.jappgeo.2018.02.020
  • Selig, E., & Waters, J. (1994). Track geotechnology and substructure management. Thomas Telford Services Ltd. https://books.google.com/books?hl=en‎&id=ZHxW4D6XT0MC&oi=fnd&pg=PA10&ots=jo1yGVtOiM&sig=xXTCBk5BPdD_chXKeobCpuS0yNQ
  • Selig, E. T., & Sluz, A. (1978). Ballast and subgrade response to train loads. Transportation Research Record, 694, 53-60. https://trid.trb.org/view/141400
  • Sun, Q. D., Indraratna, B., & Nimbalkar, S. (2014). Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast. Géotechnique, 64(9), 746–751. https://doi.org/10.1680/geot.14.T.015
  • Sun, Q. D., Indraratna, B., & Nimbalkar, S. (2016). Deformation and Degradation mechanisms of railway ballast under high frequency cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015056. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001375
  • Sussmann, T. R., Ruel, M., & Chrismer, S. M. (2012). Source of ballast fouling and influence considerations for condition assessment Criteria. Transportation Research Record: Journal of the Transportation Research Board, 2289(1), 87–94. https://doi.org/10.3141/2289-12
  • Tennakoon, N., Indraratna, B., Nimbalkar, S., & Sloan, S. W. (2015). Application of bounding surface plasticity concept for clay-fouled ballast under drained loading. Computers and Geotechnics, 70, 96–105. https://doi.org/10.1016/j.compgeo.2015.07.010
  • Tolofari, S. R., & Gubbins, E. J. (1984). Nigerian railways: Problems and prospects. Transportation Planning and Technology, 8(4), 225–235. https://doi.org/10.1080/03081068408717255
  • Trinh, V. N., Tang, A. M., Cui, Y. J., Dupla, J. C., Canou, J., Calon, N., Lambert, L., Robinet, A., & Schoen, O. (2012). Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests. Soils and Foundations, 52(3), 511–523. https://doi.org/10.1016/j.sandf.2012.05.009
  • Tutumluer, E., Ahuja, N., Hart, J. M., Moaveni, M., Huang, H., Zhao, Z., & Shah, S. (2017). Field evaluation of ballast fouling conditions using machine vision. Safety IDEA Program Project Final Report, 27. IDEA Program Transportation Research Board The National Academies
  • Wang, H. L., Cui, Y. J., Lamas-Lopez, F., Calon, N., Saussine, G., Dupla, J. C., Canou, J., Aimedieu, P., & Chen, R. P. (2018). Investigation on the mechanical behavior of track-bed materials at various contents of coarse grains. Construction and Building Materials, 164, 228–237. https://doi.org/10.1016/j.conbuildmat.2017.12.209
  • Wang, H.-L., Cui, Y.-J., Lamas-Lopez, F., Dupla, J.-C., Canou, J., Calon, N., Saussine, G., Aimedieu, P., & Chen, R.-P. (2018a). Permanent deformation of track-bed materials at various inclusion contents under large number of loading cycles. Journal of Geotechnical and Geoenvironmental Engineering, 144(8), 04018044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001911
  • Wnek, M., Tutumluer, E., Moaveni, M., & Gehringer, E. (2013). Investigation of aggregate properties influencing railroad ballast performance. Transportation Research Record, 2374(1), 180–189. https://doi.org/10.3141/2374-21