940
Views
1
CrossRef citations to date
0
Altmetric
CIVIL ENGINEERING

Spatio-temporal analysis of temperature projections based on representative concentration pathways for Satluj River Basin, India

& | (Reviewing editor)
Article: 1933683 | Received 11 Oct 2019, Accepted 01 May 2021, Published online: 10 Jun 2021

References

  • Cannon, F., Carvalho, L. M. V., Jones, C., Hoell, A., Norris, J., Kiladis, G. N., & Tahir, A. A. (2016). The influence of tropical forcing on extreme winter precipitation in the Western Himalaya. Climate Dynamics. https://doi.org/10.1007/s00382-016-3137-0
  • Choudhary, A., & Dimri, A. P. (2017). Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Climate Dynamics. https://doi.org/10.1007/s00382-017-3789-4
  • Colliera, M.A., Jeffreyb, S.J.,Rotstayna, L. D., Wongb, K. K-H., Dravitzkia, S.M., Moesenederc, C., Hamalainenb, C., Syktusb, J.I., Suppiaha, R., Antonyd, J., El Zeind, A., and Atif, M. (2011). The CSIRO-Mk3.6.0 Atmosphere-Ocean GCM: Participation in CMIP5 and data publication. In MODSIM 2011-19th International Congress on Modelling and Simulation - Sustaining Our Future: Understanding and Living with Uncertainty, no. December: 2691–2697, Perth, Australia.
  • Dimri, A. P., Kumar, D., Choudhary, A., & Maharana, P. (2018). Future changes over the Himalayas: Maximum and minimum temperature. Global and Planetary Change, 162(March), 212–15. https://doi.org/10.1016/j.gloplacha.2018.01.015
  • Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., & Zeng, F. (2011). The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24(13), 3484–3519. https://doi.org/10.1175/2011JCLI3955.1
  • Ehsani, N., Vörösmarty, C. J., Fekete, B. M., & Stakhiv, E. Z. (2017). Reservoir operations under climate change: Storage capacity options to mitigate risk. Journal of Hydrology, 555, Dec. https://doi.org/10.1002/wcc.454
  • Gao, C., Booij, M. J., & Xu, Y.-P. (2020). Assessment of extreme flows and uncertainty under climate change: Disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability, Hydrol. Hydrology and Earth System Sciences, 24(6), 3251–3269. https://doi.org/10.5194/hess-24-3251-2020
  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., & Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991. https://doi.org/10.1175/2011JCLI4083.1
  • Girvetz, E. H., Chris Zganjar, G. T., Raber, E. P., Maurer, P. K., Lawler, J. J., & Lawler, J. J. (2009). Applied climate-change analysis: The climate Wizard tool. PLoS ONE, 4(12), e8320. https://doi.org/10.1371/journal.pone.0008320
  • Goyal, M. K., & Khan, M. (2017). Assessment of spatially explicit annual water-balance model for Sutlej river Basin in eastern Himalayas and Tungabhadra river Basin in peninsular India. Hydrology Research, 48(2), 542–558. https://doi.org/10.2166/nh.2016.053
  • Graham, L. P., Hagemann, S., Jaun, S., & Beniston, M. (2007). On interpreting hydrological change from regional climate models. Climatic Change, 81(S1), 97–122. https://doi.org/10.1007/s10584-006-9217-0
  • Hamid, A. T., Sharif, M., & Archer, D. (2014). Analysis of temperature trends in Satluj river Basin, India. Journal of Earth Science & Climatic Change, 5(8), 222. https://doi.org/10.4172/2157-7617.1000222
  • IPCC. (2000). Emissions scenarios. A Special Report of WG III of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1535 pp). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
  • Jha, S., Das, J., Sharma, A., Hazra, B., & Goyal, M. K. (2019). Probabilistic evaluation of vegetation drought likelihood and its implications to resilience across India. Global and Planetary Change, 176, 23–35. https://doi.org/10.1016/j.gloplacha.2019.01.014
  • Khattak, M. S., Babel, M. S., & Sharif, M. (2011). Hydro-meteorological trends in the upper Indus river Basin in Pakistan. Climate Research, 46, 103–119. https://doi.org/10.3354/cr00957
  • Kothawale, D. R., & Singh, H. N. (2017). Recent trends in tropospheric temperature over India during the period 1971-2015. Earth and Space Science, 4(5), 240–246. https://doi.org/10.1002/2016EA000246
  • Kulkarni, A., Patwardhan, S., Krishna Kumar, K., Ashok, K., & Krishnan, R. (2013). Projected climate change in the Hindu Kush–Himalayan region by using the high-resolution regional climate model PRECIS. Mountain Research and Development, 33(2), 142-151. http://dx.doi.org/10.1659/MRD-JOURNAL-D-12-00027.1
  • Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D. A., Shrestha, A. B., Bierkens, M. F. P., & Añel, J. A. (2016). Climate change impacts on the upper indus hydrology: Sources, shifts and extremes. PLoS ONE, 11(11), e0165630. https://doi.org/10.1371/journal.pone.0165630
  • New, M., Todd, M., Hulme, M., & Jones, P. (2001). Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 21(15), 1889–1922. https://doi.org/10.1002/joc.680
  • Nordhaus, W. D. (2007). A review of the stern review on the economics of climate change. Journal of Economic Literature, 45(3), 686–702. https://doi.org/10.1257/jel.45.3.686
  • R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL http://www.R-project.org/
  • Radhakrishnan, K., Sivaraman, I., Jena, S. K., Sarkar, S., & Adhikari, S. (2017). A climate trend analysis of temperature and Rainfall in India. Climate Change and Environmental Sustainability, 5(2), 146. https://doi.org/10.5958/2320-642X.2017.00014.X
  • Rahman, M. H. U., Ahmad, A., Wang, X., Wajid, A., Nasim, W., Hussain, M., Ahmad, B., Ahmad, I., Ali, Z., Ishaque, W., Awais, M., Shelia, V., Ahmad, S., Fahd, S., Alam, M., Ullah, H., & Hoogenboom, G. (2018). Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agricultural and Forest Meteorology, 253–254(May), 94–113. https://doi.org/10.1016/j.agrformet.2018.02.008
  • Rajbhandari, R., Shrestha, A. B., Kulkarni, A., Patwardhan, S. K., & Bajracharya, S. R. (2014). Projected changes in climate over the Indus river Basin using a high resolution regional climate model (PRECIS). Climate Dynamics, 19. https://doi.org/10.1007/s00382-014-2183-8
  • Ross, R. S., Krishnamurti, T. N., Pattnaik, S., & Pai, D. S. (2018). Decadal surface temperature trends in India based on a new high-resolution data set OPEN.8, 7452. https://doi.org/10.1038/s41598-018-25347-2
  • Rotstayn, L. D., Jeffrey, S. J., Collier, M. A., Dravitzki, S. M., Hirst, A. C., Syktus, J. I., and Wong, K. K. (2012). Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations, Atmos. Chem. Phys., 12, 6377–6404. https://doi.org/10.5194/acp-12-6377–2012
  • Sharif, M. (2015). Analysis of Projected temperature changes over Saudi Arabia in the twenty-first century. Arabian Journal of Geosciences, 8(10), 10. https://doi.org/10.1007/s12517-015-1810-y
  • Sharif, M., Burn, D., & Hussain, A. (2010). Climate change impacts on extreme flow measures in Satluj river Basin in India. In World Environmental and Water Resources Congress 2010, Rhode Island. Reston, VA: American Society of Civil Engineers, 46–59. https://doi.org/10.1061/41114(371)7.
  • Shukla, S., Kansal, M. L., & Jain, S. K. (2017). Snow cover area variability assessment in the upper part of the Satluj river basin in India. Geocarto International, 32(11), 1285–1306. https://doi.org/10.1080/10106049.2016.1206975
  • Singh, P., & Jain, S. K. (2002). Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region. Hydrological Sciences Journal, 47(1), 93–106. https://doi.org/10.1080/02626660209492910
  • Singh, V., & Goyal, M. K. (2017). Curve number modifications and parameterization sensitivity analysis for reducing model uncertainty in simulated and projected streamflows in a Himalayan catchment. Ecological Engineering, 108(March 2016), 17–29. https://doi.org/10.1016/j.ecoleng.2017.08.002
  • Taylor, K. E., Stouffer, R. J., Meehl, G. A., Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
  • Wang, X., Jiang, D., & Lang, X. (2019). Extreme temperature and precipitation changes associated with four degree of global warming above pre-industrial levels. International Journal of Climatology, 39(4), 1822-1838. November. Wiley-Blackwell. https://doi.org/10.1002/joc.5918
  • Wu, T., Weiping, L., Jinjun, J., Xin, X., Laurent, L., Wang, Z., Zhang, Y., et al. (2013). Global carbon budgets simulated by the Beijing climate center climate system model for the last century. Journal of Geophysical Research: Atmospheres, 118(10), 4326–4347. https://doi.org/10.1002/jgrd.50320
  • Xuan, J., Yungang, L., Luo, X., Daming, H., Guo, R., Wang, J., Bai, Y., Yue, C., & Liu, C. (2020). Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmospheric Research, 242 (2020), 104964. https://doi.org/10.1016/j.atmosres.2020.104964
  • Zheng, H., Francis, H. S., Chiew, S. C., & Podger, G. (2018). Future climate and runoff projections across South Asia from CMIP5 global climate models and hydrological modelling. Journal of Hydrology: Regional Studies, 18(August), 92–109. https://doi.org/10.1016/j.ejrh.2018.06.004