3,083
Views
3
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Properties of high strength concrete with reduced amount of Portland cement– a case study

, , ORCID Icon & | (Reviewing editor)
Article: 1938369 | Received 12 Feb 2021, Accepted 22 May 2021, Published online: 15 Jul 2021

References

  • ASTM C267-01. (2012). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0267-20
  • ASTM C642-13. (2013). Standard test method for density, absorption, and voids in hardened concrete. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0642-13
  • ASTM C989/C989M-18a. (2018). Standard specification for slag cement for use in concrete and mortars. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/C0989_C0989M-18A.
  • DIN 1048-1. (1991). Testing concrete; testing of fresh concrete (foreign standard)
  • Elchalakani, M., Aly, T., & Abu-Aisheh, E. (2014). Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 1, 10–15. https://doi.org/10.1016/j.cscm.2013.11.001
  • Existing and Potential Technologies for Carbon Emissions Reductions in the Indian Cement Industry. (2013). A set of technical papers produced for the project ‘low carbon technology road map for the Indian cement industry.
  • Gao, J. M., Qian, C. X., Liu, H. F., Wang, B., & Li, L. (2005). ITZ microstructure of concrete containing GGBS. Cement and Concrete Research, 35(7), 1299–1304. https://doi.org/10.1016/j.cemconres.2004.06.042
  • Ghoddousi, P., Javid, A. A. S., & Sobhani, J. (2014). Effects of particle packing density on the stability and rheology of self-consolidating concrete containing mineral admixtures. Construction and Building Materials, 53, 102–109. https://doi.org/10.1016/j.conbuildmat.2013.11.076
  • Güneyisi, E., & Gesoğlu, M. (2011). Properties of self-compacting Portland pozzolana and limestone blended cement concretes containing different replacement levels of slag. Materials and Structures, 44(8), 1399–1410. https://doi.org/10.1617/s11527-011-9706-0
  • Higgins, D. (2007). Briefing: GGBS and sustainability. Proceedings of the ICE-Construction Materials, 160(3), 99–101. https://doi.org/10.1680/coma.2007.160.3.99
  • Hooton, R. D., & Emery, J. J. (1990). Sulfate resistance of a Canadian slag cement. ACI Materials Journal, 87, 547–555.
  • IS 269: 2015. (2015). Ordinary Portland cement – Specification. Bureau of Indian Standards, New Delhi, India.
  • IS 383: 2016. (2016). Coarse and fine aggregate for concrete – Specification. Bureau of Indian Standards, New Delhi, India.
  • IS 516: 2018. (2018). Hardened concrete- Methods of test. Bureau of Indian Standards, New Delhi, India.
  • IS: 10262. (2019). Concrete mix proportioning – Guidelines. Bureau of Indian Standards, New Delhi, India.
  • Khodair, Y., & Bommareddy, B. (2017). Self-consolidating concrete using recycled concrete aggregate and high volume of fly ash, and slag. Construction and Building Materials, 153, 307–316. https://doi.org/10.1016/j.conbuildmat.2017.07.063
  • Lim, T. Y. D., Teng, S., Bahador, S. D., & Gjørv, O. E. (2016). Durability of very-high-strength concrete with supplementary cementitious materials for marine environments. ACI Materials Journal, 113(1). https://doi.org/10.14359/51687981
  • Mohamed, O. A., & Najm, O. F. (2017). Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering, 11(4), 406–411. https://doi.org/10.1007/s11709-016-0350-1
  • Monkman, S., & Shao, Y. (2010). Carbonation curing of slag-cement concrete for binding CO2 and improving performance. Journal of Materials in Civil Engineering, 22(4), 296–304. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000018
  • Neville, A. M. (1997). Properties of concrete. Prentice hall.
  • Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505–514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
  • Raghavendra, Y. B., & Ramalinga Reddy, Y. (2019). Optimum usage of GGBS in ready mix concrete industry. International Journal of Engineering and Advanced Technology, 8,, 4542–4553. https://doi.org/10.35940/ijeat.F8861.088619
  • Rashad, A. M. (2018). An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Construction and Building Materials, 187, 89–117. https://doi.org/10.1016/j.conbuildmat.2018.07.150
  • Thomas, M. D. A., Scott, A., Bremner, T., Bilodeau, A., & Day, D. (2008). Performance of slag concrete in marine environment. ACI Materials Journal, 105, 628–634.
  • Ting, L., Qiang, W., & Yuqi, Z. (2020). Influence of ultra-fine slag and silica fume on properties of high-strength concrete. Magazine of Concrete Research, 72(12), 610–621. https://doi.org/10.1680/jmacr.18.00492
  • Topçu, İ. B., & Boğa, A. R. (2010). Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete. Materials & Design, 31(7), 3358–3365. https://doi.org/10.1016/j.matdes.2010.01.057
  • Wang, Q., Wang, D., & Chen, H. (2017). The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cement and Concrete Composite, 83, 125–137. https://doi.org/10.1016/j.cemconcomp.2017.07.021
  • Zhang, M. H., Islam, J., & Peethamparan, S. (2012). Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cement and Concrete Composites, 34(5), 650–662. https://doi.org/10.1016/j.cemconcomp.2012.02.005