884
Views
0
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Thermal equilibrium safety assessment of storage and transportation for 2,2’-Azobis(2,4-dimethylvaleronitrile) initiator required for polymer resin in construction industries

& | (Reviewing editor)
Article: 1941589 | Received 20 Apr 2021, Accepted 07 Jun 2021, Published online: 04 Aug 2021

References

  • Baszkin, A., & Ter‐Minassian‐Saraga, L. (1971). Chemical structures of surface‐oxidized and grafted polyethylene: Adsorption and wetting studies. Journal of Polymer Science: Polymer Symposia, 34(1), 243–18. https://doi.org/10.1002/polc.5070340122
  • British Standards Institution. (2012). Testing hardened concrete: Shape, dimensions and other requirements for specimens and moulds, BSI.
  • Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., & Mitsuhashi, T. (2000). Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results, Thermochim. Acta, 355(1-2), 125–143. https://doi.org/10.1016/S0040-6031(00)00443-3
  • Burnham, A. K. (2000). Computational aspects of kinetic analysis.: Part D: The ICTAC kinetics project–multi thermal history model fitting methods and their relation to isoconversional methods. Thermochimica Acta, 355(1–2), 165–170. https://doi.org/10.1016/S0040-6031(00)00446-9
  • ChemInform Saint-Petersburg (CISP), L. (2021). Thermal safety software. CISP. Retrieved http://www.cisp.spb.ru
  • Chervin, S., & Bodman, G. T. (2003). Method for estimating decomposition characteristics of energetic chemicals. Process Safety Progress, 22(4), 241–243. https://doi.org/10.1002/prs.680220412
  • Chiang, C. L., Liu, S. H., Cao, C. R., Hou, H. Y., & Shu, C. M. (2018). Multiapproach thermodynamic and kinetic characterization of the thermal hazards of 2, 2ʹ-azobis (2-methylpropionate) alone and when mixed with several solvents, J. Journal of Loss Prevention in the Process Industries, 51, 150–158. https://doi.org/10.1016/j.jlp.2017.12.003
  • Gao, P. F., Liu, S. H., Zhang, B., Cao, C. R., & Shu, C. M. (2019). Complex thermal analysis and runaway reaction of 2,2ʹ-azobis (isobutyronitrile) using DSC, STA, VSP2, and GC/MS, J. Journal of Loss Prevention in the Process Industries, 60, 87–95. https://doi.org/10.1016/j.jlp.2019.04.011
  • Gowda, S., Abiraj, K., & Gowda, D. C. (2002). Reductive cleavage of azo compounds catalyzed by commercial zinc dust using ammonium formate or formic acid. Tetrahedron Letters, 43(7), 1329–1331. https://doi.org/10.1016/S0040-4039(01)02370-X
  • Huang, C. C., Peng, J. J., Wu, S. H., Hou, H. Y., You, M. L., & Shu, C. M. (2010). Effects of cumene hydroperoxide on phenol and acetone manufacturing by DSC and VSP2. Journal of Thermal Analysis and Calorimetry, 102(2), 579–585. https://doi.org/10.1007/s10973-010-0953-z
  • Kossoy, A. A., & Akhmetshin, Y. G. (2007). Identification of kinetic models for the assessment of reaction hazards. Process Safety Progress, 26(3), 209–220. https://doi.org/10.1002/prs.10189
  • Kossoy, A. A., & Akhmetshin, Y. G. (2012). Simulation-based approach to design of inherently safer processes. Process Safety and Environmental Protection, 90(5), 349–356. https://doi.org/10.1016/j.psep.2012.03.007
  • Kossoy, A. A., Belokhvostov, V. M., & Koludarova, E. Y. (2015). Thermal decomposition of AIBN: Part D: Verification of simulation method for SADT determination based on AIBN benchmark. Thermochimica Acta, 621, 36–43. https://doi.org/10.1016/j.tca.2015.06.008
  • Kossoy, A. A., & Hofelich, T. C. (2003). Methodology and software for assessing reactivity ratings of chemical systems. Process Safety Progress, 22(4), 235–240. https://doi.org/10.1002/prs.680220410
  • Kossoy, A. A., & Koludarova, E. Y. (1995). Specific features of kinetics evaluation in calorimetric studies of runaway reactions. Journal of Loss Prevention in the Process Industries, 8(4), 229–235. https://doi.org/10.1016/0950-4230(95)00018-V
  • Kossoy, A. A., & Sheinman, I. Y. (2007). Comparative analysis of the methods for SADT determination. Journal of Hazardous Materials, 142(3), 626–638. https://doi.org/10.1016/j.jhazmat.2006.06.068
  • Levin, M., Gonzales, N., Zimmerman, L., & Yang, J. (2006). Kinetics of acid-catalyzed cleavage of cumene hydroperoxide. Journal of Hazardous Materials, 130(1–2), 88–106. https://doi.org/10.1016/j.jhazmat.2005.07.068
  • Lin, C. P., Tseng, J. M., Chang, Y. M., Liu, S. H., Cheng, Y. C., & Shu, C. M. (2010). Modeling liquid thermal explosion reactor containing tert-butyl peroxybenzoate. Journal of Thermal Analysis and Calorimetry, 102(2), 587–595. https://doi.org/10.1007/s10973-010-0954-y
  • Liu, S. H., Cao, C. R., Lin, W. C., & Shu, C. M. (2019). Experimental and numerical simulation study of the thermal hazards of four azo compounds. Journal of Hazardous Materials, 365, 164–177. https://doi.org/10.1016/j.jhazmat.2018.11.003
  • Liu, S. H., Lin, W. C., Hou, H. Y., & Shu, C. M. (2017). Comprehensive runaway kinetic analysis and validation of three azo compounds using calorimetric approach and simulation. Journal of Loss Prevention in the Process Industries, 49, 970–982. https://doi.org/10.1016/j.jlp.2017.05.014
  • Liu, S. H., Lin, W. C., Xia, H., Hou, H. Y., & Shu, C.-M. (2018). Combustion of 1-butylimidazolium nitrate via DSC, TG, VSP2, FTIR, and GC/MS: An approach for thermal hazard, property and prediction assessment, Process Saf. Environmental Protection, 116, 603–614. https://doi.org/10.1016/j.psep.2018.03.010
  • Liu, S. H., & Shu, C. M. (2015). Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2. Journal of Thermal Analysis and Calorimetry, 121(1), 533–540. https://doi.org/10.1007/s10973-015-4559-3
  • Liu, S. H., Yu, Y. P., Lin, Y. C., Weng, S. Y., Hsieh, T. F., & Hou, H. Y. (2014). Complex thermal evaluation for 2,2ʹ-azobis(isobutyronitrile) by non-isothermal and isothermal kinetic analysis methods, J. Journal of Thermal Analysis and Calorimetry, 116(3), 1361–1367. https://doi.org/10.1007/s10973-013-3632-z
  • Lv, J., Chen, L., Chen, W., Gao, H., & Peng, M. (2013). Kinetic analysis and self-accelerating decomposition temperature (SADT) of dicumyl peroxide. Thermochimica Acta, 571, 60–63. https://doi.org/10.1016/j.tca.2013.08.029
  • Mao, X., Li, Y., Li, Y., Jiang, L., & Wang, X. (2020). Thermal properties of decomposition and explosion for CL-20 and CL-20/n-Al. Journal of Energetic Materials, 38(1), 98–110. https://doi.org/10.1080/07370652.2019.1668875
  • Ohama, Y. (1973). Mix proportions and properties of polyester resin concretes. ACI Materials Journal, 40(11), 283–294. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=17394
  • Ohama, Y. (2003). Recent progress in research and development activities of polymer mortar and concrete in Japan In 4th Asia Symposium on Polymers in Concrete (pp. 39–47). Koriyama, Japan.
  • Opfermann, J. (2000). Kinetic analysis using multivariate non-linear regression. Journal of Thermal Analysis and Calorimetry, 60(2), 641–658. https://doi.org/10.1023/A:1010167626551
  • Opfermann, J., & Hädrich, W. (1995). Prediction of the thermal response of hazardous materials during storage using an improved technique. Thermochimica Acta, 263, 29–50. https://doi.org/10.1016/0040-6031(94)02392-2
  • Parulekar, S. J. (1998). Modal analysis and optimization of isothermal autocatalytic reactions. Chemical Engineering Science, 53(13), 2379–2394. https://doi.org/10.1016/S0009-2509(98)00053-0
  • Qi, L., Ma, Z., Han, J., & Xiao, Z. (2020). Effect of different BPS concentration on the thermal decomposition and thermal stability properties of GAP curing. Journal of Energetic Materials, 38(2), 191–205. https://doi.org/10.1080/07370652.2019.1679283
  • Saravana Karthika, V., Mohan, A., Dinesh Kumar, R., & Chippymol, J. (2019). Sustainable consideration by characterization of concrete through partial replacement of fine aggregate using granite powder and iron powder. Journal of Green Engineering, 9(4), 514–525. http://www.jgenng.com/wp-content/uploads/2019/12/volume9-issue4-004.pdf
  • Talouba, I. B., Balland, L., Mouhab, N., & Abdelghani-Idrissi, M. (2011). Kinetic parameter estimation for decomposition of organic peroxides by means of DSC measurements. Journal of Loss Prevention in the Process Industries, 24(4), 391–396. https://doi.org/10.1016/j.jlp.2011.02.001
  • United Nations. (2018). Recommendations on the transport of dangerous goods: Model regulations (Twentieth Revised ed.).
  • Vanjeri, V. N., Goudar, N., Kasai, D., Masti, S. P., & Chougale, R. B. (2019). Thermal and tensile properties study of 4-Hydroxycoumarin doped Polyvinyl alcohol/Chitosan blend films. Chemical Data Collections, 23, 100257. https://doi.org/10.1016/j.cdc.2019.100257
  • Wang, Q., Rogers, W. J., & Mannan, M. S. (2009). Thermal risk assessment and rankings for reaction hazards in process safety. Journal of Thermal Analysis and Calorimetry, 98(1), 225–233. https://doi.org/10.1007/s10973-009-0135-z
  • Wang, S. Y., Kossoy, A. A., Yao, Y. D., Chen, L. P., & Chen, W. H. (2017). Kinetics-based simulation approach to evaluate thermal hazards of benzaldehyde oxime by DSC tests. Thermochimica Acta, 655, 319–325. https://doi.org/10.1016/j.tca.2017.07.015
  • Wang, T. S., Liu, S. H., Qian, X. M., You, M. L., Chou, W. L., & Shu, C. M. (2013). Isothermal hazards evaluation of benzoyl peroxide mixed with benzoic acid via TAM III test, J. Journal of Thermal Analysis and Calorimetry, 113(3), 1625–1631. https://doi.org/10.1007/s10973-013-3020-8
  • Whitmore, M. W., & Wilberforce, J. K. (1993). Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures. Journal of Loss Prevention in the Process Industries, 6(2), 95–101. https://doi.org/10.1016/0950-4230(93)90006-J
  • Xi, G. Q., Liu, T., Ma, C., Yuan, Q., Xin, W., Lu, J. J., & Ma, M. G. (2019). Superhydrophobic, compressible, and reusable polyvinyl alcohol-wrapped silver nanowire composite sponge for continuous oil-water separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 583, 124028. https://doi.org/10.1016/j.colsurfa.2019.124028
  • Ze, D., Yingying, C., Liping, C., Wanghua, C., Jun, Z., & Beibei, X. (2018). Evaluation of isothermal kinetics of the thermal decomposition of guanidine nitrate in constant volume. Journal of Energetic Materials, 36(4), 412–423. https://doi.org/10.1080/07370652.2018.1473899
  • Zeng, P., Chen, X., Qin, Y.-R., Zhang, Y.-H., Wang, X.-P., Wang, J.-Y., Ning, Z. X., Ruan, Q.-J., & Zhang, Y. S. (2019). Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Research International, 126, 108604. https://doi.org/10.1016/j.foodres.2019.108604
  • Zhang, R., Gao, J., Wang, J., Zhu, Y., Pan, H., & Chen, L. (2021). Evaluation of thermal hazards based on thermokinetic parameters of 2,4-dinitroanisole. Journal of Energetic Materials, 1–15. https://doi.org/10.1080/07370652.2021.1898490