923
Views
9
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Unsteady radiative magnetohydromagnetic flow and entropy generation of maxwell nanofluid in a porous medium with arrhenius chemical kinetic

, , & | (Reviewing editor)
Article: 1942639 | Received 10 Sep 2020, Accepted 02 Jun 2021, Published online: 23 Jul 2021

References

  • Baslem, A., Sowmya, G., Gireesha, B. J., Prasannakumar, B. C., Rahimi-Gorji, M., & Hoang, N. M. (2020). Analysis of thermal behavior of a porousfin fully wetted with nanofluids: Convectionand radiation. Journal of Molecular Liquids, 307(6), 112920. https://doi.org/10.1016/j.molliq.2020.112920
  • Bhatti, M. M., Abbas, T., Rashidi, M. M., Ali, M. S., & Yang, Z. (2016). Entropy generation on MHD EyringPowell nanofluid through a permeable stretching surface. Entropy, 18(6), 224–20. https://doi.org/10.3390/e18060224
  • Fatunmbi, E. O., & Adeniyan, A. (2020). Nonlinear thermal radiation and entropy generation on steady flow of magneto-micropolar fluid passing a stretching sheet with variable properties. Results in Engineering, 6, 100142. https://doi.org/10.1016/j.rineng.2020.100142
  • Fatunmbi, E. O., & Salawu, S. O. (2020). Thermodynamic second law analysis of magneto-micropolar fluid flow past nonlinear porous media with non-uniform heat source. Propulsion and Power Research, 9(3), 281–288. https://doi.org/10.1016/j.jppr.2020.03.004
  • Fatunmbi, E. O., & Salawu, S. O. (2021). Analysis of entropy generation in hydromagnetic micropolar fluid flow over an inclined nonlinear permeable stretching sheet with variable viscosity. Journal of Applied and Computational Mechanics, 6(SI), 1301–1313. https://doi.org/10.22055/jacm.2019.30990.1807
  • Hayat, T., Khan, M. I., Farooq, M., Alsaedi, A., Waqas, M., & Yasmeen, T. (2016). Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mas Transfer, 99, 702–710. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.016
  • Hayat, T., Khan, M. I., Qayyum, S., & Alsaedi, A. (2018). Entropy generation in flow with silver and copper nanoparticles. Colloids and Surfaces A, 539, 335–346. https://doi.org/10.1016/j.colsurfa.2017.12.021
  • Hong, T. K., Yang, H. S., & Choi, C. J. (2005). Study of the enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics, 97(6), 1–4. https://doi.org/10.1063/1.1861145
  • Kareem, R. A., Salawu, S. O., & Yan, Y. (2020). Analysis of transient Rivlin-Ericksen fluid and irreversibility of exothermic reactive hydromagnetic variable viscosity. Journal of Applied Computing Mechanical, 6(1), 26–36. https://doi.org/10.22055/jacm.2019.28216.1460
  • Khan, M. I. (2021). Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. International Communications in Heat and Mass Transfer, 122, 105177. https://doi.org/10.1016/j.icheatmasstransfer.2021.105177
  • Khan, N. S., Gul, T., Islam, S., & Khan, W. Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet. (2017). The European Physical Journal Plus, 132(1), 11. pages. https://doi.org/10.1140/epjp/i2017-11277-3
  • Khan, N. S., Islam, S., Gul, T., Khan, I., Khan, W., & Ali, L. (2018). Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alexandria Engineering Journal, 57(2), 1019–1031. https://doi.org/10.1016/j.aej.2017.01.036
  • Khan, N. S., Kumam, P., & Thounthong, P. (2019). Renewable energy technology for the sustainable development ofthermal system with entropy measures. International Journal of Heat and Mass Transfer, 145, 118713. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118713
  • Khan, Z., Rasheed, H. U., Alkanhal, T. A., Ullah, M., Khan, I., & Tlil, I. (2018). Effect of magnetic field and heat source on Upper-convected-maxwell fluid in a porous channel. Open Physics, 16(1), 917–928. https://doi.org/10.1515/phys-2018-0113
  • Kotresh, M. J., Ramesh, G. K., Shashikala, V. K. R., & Prasannakumara, B. C. (2020). Assessment of Arrhenius activation energy in stretched flow of nanofluid over a rotating disc. Heat Transfer, 20(11), 1–22. https://doi.org/10.1002/htj.22006
  • Kuznetsov, A. V., & Nield, D. A. (2014). Natural convective boundary layer flow of a nanofluid past a vertical plat: A revised model. International Journal of Thermal Sciences, 77, 126–129. https://doi.org/10.1016/j.ijthermalsci.2009.07.015
  • Madhu, M., Kishan, N., & Chamkha, A. J. (2017). Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydromagnetic and thermal radiation effects. Propulsion and Power Research, 6(1), 31–40. https://doi.org/10.1016/j.jppr.2017.01.002
  • Makinde, O. D., & Aziz, A. (2011). boundary layer flow of a nanofluid past a stretching sheet with a convective boundry condition. International Journal of Thermal Sciences, 50, 1326–1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019
  • Moakher, P. G., Abbasi, M., & Khaki, M. (2016). Fully developed flow of fourth grade fluid through the channel with slip condition in the presence of a magnetic field. Journal of Applied Fluid Mechanics, 9(5), 2239–2245. https://doi.org/10.18869/acadpub.jafm.68.236.24689
  • Motsa, S. S., Khan, Y., & Shateyi, S. (2012). A new numerical solution of Maxwell fluid over a shrinking sheet in the region of a stagnation point. Mathematical Problems in Engineering, 290615, 11 pages. https://doi.org/10.1155/2012/290615
  • Mukhopadhyay, S. (2012). Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chinese Physics Letters, 29(5), 523–530. https://doi.org/10.1088/0256-307X/29/5/054703
  • Mukhopadhyay, S., & Bhattacharyya, K. (2012). Unsteady flow of a Maxwell fluid over a stretching surface in the presence of chemical reaction. Journal of the Egyptian Mathematical Society, 20(3), 229–234. https://doi.org/10.1016/j.joems.2012.08.019
  • Mukhopadhyay, S., Ranjan, P., & Layek, G. C. (2013). Heat transfer characteristics for Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation. Journal of Applied Mechanics and Technical Physics, 54(3), 385–396. https://doi.org/10.1134/S0021894413030061
  • Ogunseye, H. A., Salawu, S. O., Tijani, Y. O., Riliwan, M., & Sibanda, P. (2019). Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring–Powell nanofluid flow with variable thermal conductivity and chemical reaction. Multidiscipline Modeling in Materials and Structures, 15(6), 1100–1120. https://doi.org/10.1108/MMMS-01-2019-0008
  • Reddy, M. G., Kumar, N., Prasannakumara, B. C., Rudraswamy, N. G., & Kumar, K. G. (2021). Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Communications in Theoretical Physics, 73(4), 045002. https://iopscience.iop.org/article/ 10.1088/1572-9494/abdaa5
  • Salah, F., Aziz, Z. A., Ayem, M., & Chuan Ching, L. C. (2013). MHD accelerated flow of Maxwell fluid in a porous medium and rotating frame. ISRN Mathematical Physics, 485805, 10 pages. https://doi.org/10.1140/epjp/i2019-12656-4
  • Salawu, S. O., Dada, M. S., & Fenuga, O. J. (2019). Thermal explosion and irreversibility of hydromagnetic reactive couple stress fluid with viscous dissipation and Navier slips. Theoretical & Applied Mechanics Letters, 9, 246–253. https://iopscience.iop.org/article/ 10.1088/1572-9494/abdaa5
  • Salawu, S. O., Hassan, A. R., Abolarinwa, A., & Oladejo, N. K. (2019). Thermal stability and entropy generation of unsteady reactive hydromagnetic Powell-Eyring fluid with variable electrical and thermal conductivities. Alexandria Engineering Journal, 58(2), 519–529. https://doi.org/10.1016/j.aej.2019.05.004
  • Salawu, S. O., Oderinu, R. A., & Ohaegbue, A. D. (2020). Thermal runaway and thermodynamic second law of a reactive couple stress hydromagnetic fluid with variable properties and Navier slips. Scientific African, 7, e00261. https://doi.org/10.1016/j.sciaf.2019.e00261
  • Salawu, S. O., & Ogunseye, H. A. (2020). Entropy generation of a radiative hydromagnetic Powell-Eyring chemical reaction nanofluid with variable conductivity and electric field loading. Results in Engineering, 5, 100072. https://doi.org/10.1016/j.rineng.2019.100072
  • Salawu, S. O., Oladejo, N. K., & Dada, M. S. (2019). Analysis of unsteady viscous dissipative poiseuille fluid flow of two-step exothermic chemical reaction through a porous channel with convective cooling. Ain Shams Journal of Engineering, 10(3), 565–572. https://doi.org/10.1016/j.asej.2018.08.006
  • Saleem, S., & Abd El-Aziz, M. A. (2019). Entropy generation and convective heat transfer of radiated non-Newtonian power-law fluid past an exponentially moving surface under slip effects. European Physical Journal Plus, 134, 184–196. https://doi.org/10.1140/epjp/i2019-12656-4