1,621
Views
0
CrossRef citations to date
0
Altmetric
ELECTRICAL & ELECTRONIC ENGINEERING

Design and simulation of a novel 3-point star rectifying antenna for RF energy harvesting at 2.4 GHz

ORCID Icon, , , & | (Reviewing editor)
Article: 1943153 | Received 14 Mar 2021, Accepted 10 Jun 2021, Published online: 27 Jul 2021

References

  • Agarwal, K., Mishra, T., Karim, M. F., Chuen, M. O. L., Guo, Y. X., & Panda, S. K., “Highly efficient wireless energy harvesting system using metamaterial based compact CP antenna,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013, pp. 1–17. https://doi.org/10.1109/mwsym.2013.6697693
  • Almorabeti, S., Rifi, M., & Terchoune, H. (2019). Rectifier circuit designs for rf energy harvesting applications.
  • Arora, A., Khemchandani, A., Rawat, Y., Singhai, S., & Chaitanya, G. (2015). Comparative study of different feeding techniques for rectangular microstrip patch antenna. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 3 (5), 32–35. https://doi.org/10.17148/IJIREEICE.2015.3509.
  • Brown, W. C. (1980). The history of the development of the rectenna. Solar Power Satellite Microwave Power Transmission and Reception, 271.
  • Brown, W. C. (1984). The history of power transmission by radio waves. IEEE Transactions on Microwave Theory and Techniques, 32(9), 1230–1242. https://doi.org/10.1109/TMTT.1984.1132833
  • Brown, W. C. (1996). The history of wireless power transmission. Solar Energy, 56(1), 3–21. https://doi.org/10.1016/0038-092X(95)00080-B
  • Clerckx, B., Costanzo, A., Georgiadis, A., & Carvalho, N. B. (2018). Toward 1G mobile power networks: RF, signal, and system designs to make smart objects autonomous. IEEE Microwave Magazine, 19(6), 69–82. https://doi.org/10.1109/MMM.2018.2844018
  • Das, T. T., Vinayak, S., & Pai, S. N. (2019). Design of an energy harvesting system for wireless power transmission using microstrip antenna. Engineering Vibration, Communication and Information Processing, Springer, 481–494. ed. https://doi.org/10.1007/978-981-13-1642-5_43
  • Doan, C. H., & Bach, D. G. (2015). Investigation of rectifier circuit configurations for microwave power transmission system operating at S Band. International Journal of Electrical and Computer Engineering, 5. https://doi.org/10.11591/ijece.v5i5.pp967-974
  • Fanga, L. H., & Hassana, S. I. S. (2013). Comparison study on chebyshev and composite lowpass filter for harmonic rejection in two ways radio. Procedia Engineering, 53, 303–311. https://doi.org/10.1016/j.proeng.2013.02.040
  • Fotopoulou, K., & Flynn, B. W. (2006). Wireless powering of implanted sensors using RF inductive coupling. SENSORS, 2006, 765–768. IEEE. https://doi.org/10.1109/icsens.2007.355581
  • Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256. https://doi.org/10.1109/JRPROC.1946.234568
  • Georgiadis, A., Andia, G. V., & Collado, A. (2010). Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas and Wireless Propagation Letters, 9, 444–446. https://doi.org/10.1109/LAWP.2010.2050131
  • Haboubi, W., Takhedmit, H., Luk, J.-D. L. S., Adami, S.-E., Allard, B., Costa, F., Vollaire, C., Picon, O., & Cirio, L. (2014). An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band. Progress In Electromagnetics Research, 148, 31–39. https://doi.org/10.2528/PIER14031103
  • Han, M., Jung, S., & Sohn, H., “High efficient rectenna using a harmonic rejection low pass filter for RF based wireless power transmission,” in 2014 11th International Symposium on Wireless Communications Systems (ISWCS), 2014, pp. 423–426. https://doi.org/10.1109/iswcs.2014.6933390
  • Hosain, M. K., & Kouzani, A. Z., “Design and analysis of efficient rectifiers for wireless power harvesting in DBS devices,” in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, pp. 651–655. https://doi.org/10.1109/iciea.2013.6566448
  • Mavaddat, A., Armaki, S. H. M., & Erfanian, A. R. (2014). Millimeter-wave energy harvesting using microstrip patch antenna array. IEEE Antennas and Wireless Propagation Letters, 14, 515–518. https://doi.org/10.1109/LAWP.2014.2370103
  • Niotaki, K., Kim, S., Jeong, S., Collado, A., Georgiadis, A., & Tentzeris, M. M. (2013). A compact dual-band rectenna using slot-loaded dual band folded dipole antenna. IEEE Antennas and Wireless Propagation Letters, 12, 1634–1637. https://doi.org/10.1109/LAWP.2013.2294200
  • Roy, S. (2012). Designing of a small wearable conformal phased array antenna for wireless communications. North Dakota State University.
  • Sandeep, B. S., & Kashyap, S. S. (2012). Design and simulation of microstrip patch array antenna for wireless communications at 2.4 GHz. International Journal of Scientific & Engineering Research, 3, 1–5.
  • Shi, Y., Jing, J., Fan, Y., Yang, L., Li, Y., & Wang, M. (2018). A novel compact broadband rectenna for ambient RF energy harvesting. AEU - International Journal of Electronics and Communications, 95, 264–270. https://doi.org/10.1016/j.aeue.2018.08.035
  • Sun, H., & Geyi, W. (2015). A new rectenna with all-polarization-receiving capability for wireless power transmission. IEEE Antennas and Wireless Propagation Letters, 15, 814–817. https://doi.org/10.1109/LAWP.2015.2476345
  • Sun, H., Guo, Y.-X., He, M., & Zhong, Z. (2013). A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting. IEEE Antennas and Wireless Propagation Letters, 12, 918–921. https://doi.org/10.1109/LAWP.2013.2272873
  • Vital, D., Bhardwaj, S., & Volakis, J. L., “A 2.45 GHz RF power harvesting system using textile-based single-diode rectennas,” in IEEE MTT-S International Microwave Symposium Digest, 2019, pp. 1313–1315. https://doi.org/10.1109/mwsym.2019.8700836