1,190
Views
2
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Development of non-derivatizing hydrate salt pre-treatment solvent for pre-treatment and fractionation of corn cob

, , & ORCID Icon | (Reviewing editor)
Article: 1947444 | Received 28 Jan 2019, Accepted 06 Jan 2020, Published online: 22 Jul 2021

References

  • Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010, July). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–15. https://doi.org/10.1016/j.biortech.2009.11.093
  • Arantes, V., & Saddler, J. N. (2011, February). Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for Biofuels, 4(1), 3. https://doi.org/10.1186/1754-6834-4-3
  • Awosusi, A. A., Ayeni, A., Adeleke, R., & Daramola, M. O. (2017, March). Effect of water of crystallization on the dissolution efficiency of molten zinc chloride hydrate salts during the pre-treatment of corncob biomass. Journal of Chemical Technology & Biotechnology, 92(9), 2468–2476. https://doi.org/10.1002/jctb.5266
  • Bhatia, L., Johri, S., & Ahmad, R. (2012, December). An economic and ecological perspective of ethanol production from renewable agro waste: A review. AMB Express, 2(1), 65. https://doi.org/10.1186/2191-0855-2-65
  • Capolupo, L., & Faraco, V. (2016). Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 100(22), 9451–9467. https://doi.org/10.1007/s00253-016-7884-y
  • Chang, M. C. Y. (2007). Harnessing energy from plant biomass. Current Opinion in Chemical Biology, 11(6), 677–684. https://doi.org/10.1016/j.cbpa.2007.08.039
  • Ciolacu, D., Ciolacu, F., & Popa, V. (2011, January). Amorphous cellulose - Structure and characterization. Cellulose Chemistry and Technology, 45(1-2), 13–21.
  • de Almeida, R. M., Li, J., Nederlof, C., O’Connor, P., Makkee, M., & Moulijn, J. A. (2010). Cellulose conversion to isosorbide in molten salt hydrate media. ChemSusChem, 3(3), 325–328. https://doi.org/10.1002/cssc.200900260
  • Demirbas, A. (2009, September). Biofuels securing the planet’s future energy needs. Energy Conversion and Management, 50(9), 2239–2249. https://doi.org/10.1016/j.enconman.2009.05.010
  • Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., & Vinzant, T. B. (2008, December). Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnology and Bioengineering, 101(5), 913–925. https://doi.org/10.1002/bit.21959
  • Fischer, S., Thümmler, K., Pfeiffer, K., Liebert, T., & Heinze, T. (2002, September). Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose, 9(3/4), 293–300. https://doi.org/10.1023/A:1021121909508
  • Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/biotechnology, 108, 41–65. https://doi.org/10.1007/10_2007_070
  • Garrote, G., Domı́nguez, H., & Parajó, J. C. (2002). Autohydrolysis of corncob: Study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering, 52(3), 211–218. https://doi.org/10.1016/S0260-8774(01)00108-X
  • Georgieva, T. I., Mikkelsen, M., & Ahring, B. (2008, April). Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium thermoanaerobacter BG1L1 in a continuous immobilized reactor. Applied Biochemistry and Biotechnology, 145(1–3), 99–110. https://doi.org/10.1007/s12010-007-8014-1
  • Ghaffar, S. H., & Fan, M. (2013, Oct). Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy, 57, 264–279. https://doi.org/10.1016/j.biombioe.2013.07.015
  • Jacobsen, S. E., & Wyman, C. E. (2000, March). Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Applied Biochemistry and Biotechnology, 84(1), 81–96. https://doi.org/10.1385/ABAB:84-86:1-9:81
  • Jönsson, L. J., & Martín, C. (2016, January). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
  • Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 100(17), 3948–3962. https://doi.org/10.1016/j.biortech.2009.01.075
  • Lee, J. (1997, July). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology, 56(1), 1–24. https://doi.org/10.1016/S0168-1656(97)00073-4
  • Leipner, H., Fischer, S., Brendler, E., & Voigt, W. (2000, Oct). Structural changes of cellulose dissolved in molten salt hydrates. Macromolecular Chemistry and Physics, 201(15), 2041–2049. https://doi.org/10.1002/1521–3935(20001001)201:15<2041::AID-MACP2041>3.0.CO;2-E
  • Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., Vogel, K. P., Simmons, B. A., & Singh, S. (2010, July). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906. https://doi.org/10.1016/j.biortech.2009.10.066
  • Ling, Z., Chen, S., Zhang, X., Takabe, K., & Xu, F. (2017, August). Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-09885-9
  • Liu, Z.-H., Qin, L., Pang, F., Jin, M.-J., Li, B.-Z., Kang, Y., Dale, B. E., & Yuan, Y.-J. (2013, January). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176–184. https://doi.org/10.1016/j.indcrop.2012.11.009
  • Lou, H., Hu, Q., Qiu, X., Li, X., & Lin, X. (2016, March). Pretreatment of miscanthus by NaOH/Urea solution at room temperature for enhancing enzymatic hydrolysis. BioEnergy Research, 9(1), 335–343. https://doi.org/10.1007/s12155-015-9695-x
  • Martin, C., Klinke, H. B., & Thomsen, A. B. (2007). Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology, 40(3), 426–432. https://doi.org/10.1016/j.enzmictec.2006.07.015
  • Miller, G. L. (1959, March). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
  • Mohlala, L. M., Bodunrin, M. O., Awosusi, A. A., Daramola, M. O., Cele, N. P., & Olubambi, P. A. (2016, September). Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: A short overview. Alexandria Engineering Journal, 55(3), 3025–3036. https://doi.org/10.1016/j.aej.2016.05.014
  • Nabarlatz, D., Farriol, X., & Montané, D. (2004, July). Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides. Industrial & Engineering Chemistry Research, 43(15), 4124–4131. https://doi.org/10.1021/ie034238i
  • Sathitsuksanoh, N., Zhu, Z., Wi, S., & Zhang, Y.-H. P. (2011, March). Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass. Biotechnology and Bioengineering, 108(3), 521–529. https://doi.org/10.1002/bit.22964
  • Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959, Oct). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
  • Selig, M. J., Vinzant, T. B., Himmel, M. E., & Decker, S. (2009, March). The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Applied Biochemistry and Biotechnology, 155(1–3), 397–406. https://doi.org/10.1007/s12010-008-8511-x
  • Sen, S., Martin, J. D., & Argyropoulos, D. S. (2013). Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemistry & Engineering, 1(8), 858–870. https://doi.org/10.1021/sc400085a
  • Varga, E., Schmidt, A. S., Réczey, K., & Thomsen, A. B. (2003, January). Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology, 104(1), 37–50. https://doi.org/10.1385/ABAB:104:1:37
  • Wan, C., & Li, Y. (2011, August). Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource Technology, 102(16), 7507–7512. https://doi.org/10.1016/j.biortech.2011.05.026
  • Wilson, J. L. (1988). Biochemistry; Third edition (Stryer, Lubert). Journal of Chemical Education, 65(12), A337. https://doi.org/10.1021/ed065pA337
  • Wyman, C. E. (1994, January). Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresource Technology, 50(1), 3–15. https://doi.org/10.1016/0960-8524(94)90214-3
  • Xu, Z., Wang, Q., Jiang, Z., Yang, X., & Ji, Y. (2007, February). Enzymatic hydrolysis of pretreated soybean straw. Biomass and Bioenergy, 31(2–3), 162–167. https://doi.org/10.1016/j.biombioe.2006.06.015
  • Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008, March). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of miscanthus sinensis to monosaccharides. Bioscience, Biotechnology, and Biochemistry, 72(3), 805–810. https://doi.org/10.1271/bbb.70689
  • Zhang, L., Ruan, D., & Gao, S. (2002). Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. Journal of Polymer Science Part B: Polymer Physics, 40(14), 1521–1529. https://doi.org/10.1002/polb.10215
  • Zhang, M., Qi, W., Liu, R., Su, R., Wu, S., & He, Z. (2010, April). Fractionating lignocellulose by formic acid: Characterization of major components. Biomass and Bioenergy, 34(4), 525–532. https://doi.org/10.1016/j.biombioe.2009.12.018
  • Zhu, S. (2008, June). Use of ionic liquids for the efficient utilization of lignocellulosic materials. Journal of Chemical Technology & Biotechnology, 83(6), 777–779. https://doi.org/10.1002/jctb.1884