2,337
Views
3
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Drying kinetics of dried injera (dirkosh) using a mixed-mode solar dryer

, & ORCID Icon | (Reviewing editor)
Article: 1956870 | Received 11 May 2021, Accepted 13 Jul 2021, Published online: 10 Aug 2021

References

  • Abubakar, S., Umaru, S., Kaisan, M. U., Umar, U. A., Ashok, B., & Nanthagopal, K. (2018). Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renewable Energy, 128, 285–19. https://doi.org/10.1016/j.renene.2018.05.049
  • Adem, K. D., & Ambie, D. A. (2017). A review of injera baking technologies in Ethiopia: Challenges and gaps. Energy for Sustainable Development, 41, 69–80. https://doi.org/10.1016/j.esd.2017.08.003
  • Akhijani, H. S., Arabhosseini, A., & Kianmehr, M. H. (2016). Effective moisture diffusivity during hot air solar drying of tomato slices. Research in Agricultural Engineering, 62(1), 15–23. https://doi.org/10.17221/33/2014-RAE
  • Akpinar, E. K. (2006). Mathematical modelling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering, 77(4), 864–870. https://doi.org/10.1016/j.jfoodeng.2005.08.014
  • Amibe, D. A., & Tiruneh, A. (2011). CFD Analysis of Heat Transfer and Fluid Flow in Flat Plate Natural Convection Solar Air Heater. Paper presented at the Proceedings of the ISES Solar World Congress 2011. Kassel, Germany. http://dx.doi.org/10.18086/swc.2011.19.02
  • ASTM, American Society for Testing and Materials. (2014). Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. ASTM International: West Conshohocken, PA.
  • Augustus, L. M., Kumar, S., & Bhattacharya, S. C. A comprehensive procedure for performance evaluation of solar food dryers. (2002). Renewable and Sustainable Energy Reviews, 6(4), 367–393. https://doi.org/10.1016/S1364-0321(02)00005-9. https://doi.org/10.1016/S1364-0321(02)00005-9
  • Augustus Leon, M., Kumar, S., & Bhattacharya, S. C. (2002). A comprehensive procedure for performance evaluation of solar food dryers. Renewable and Sustainable Energy Reviews, 6(4), 367–393.
  • Baye, K. (2014). Teff: Nutrient compostion and health benefits. International Food Policy Research Institute. Retrieved [28.4.2021], from http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/128334/filename/128545.pdf
  • Bena, B., & Fuller, R. J. (2002). Natural convection solar dryer with biomass back-up heater. Solar Energy, 72(1), 75–83. https://doi.org/10.1016/S0038-092X(01)00095-0
  • Liliana Seremet (Ceclu), Botez, Elisabeta, Nistor, Oana-Viorela, Andronoiu, Doina Georgeta, & Mocanu, Gabriel-Danut. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125
  • César, E., Lilia, L.-V. A., César-Munguía, O., García-Valladares, I., Figueroa, P., Rogelio,, & Orosco, B. (2020). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy, 147, 845–855. https://doi.org/10.1016/j.renene.2019.09.018
  • Chauhan, P. S., Kumar, A., Nuntadusit, C., & Banout, J. (2018). Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer. Renewable Energy, 118, 799–813. https://doi.org/10.1016/j.renene.2017.11.069
  • Dairo, O. U., Aderinlewo, A. A., Adeosun, O. J., Ola, I. A., & Salaudeen, T. (2015). Solar drying kinetics of cassava slices in a mixed flow dryer. Acta Technologica Agriculturae, 18(4), 102–107. https://doi.org/10.1515/ata-2015-0020
  • Darıcı, S., & Sen, S. (2015). Experimental investigation of convective drying kinetics of kiwi under different conditions.Heat Mass Transfer 51, 1167– 1176.
  • Dejchanchaiwong, R., Arkasuwan, A., Kumar, A., & Tekasakul, P. (2016). Mathematical modeling and performance investigation of mixed-mode and indirect solar dryers for natural rubber sheet drying. Energy for Sustainable Development, 34, 44–53. https://doi.org/10.1016/j.esd.2016.07.003
  • Doymaz, İ. (2004). Drying kinetics of white mulberry. Journal of Food Engineering, 61(3), 341–346. https://doi.org/10.1016/S0260-8774(03)00138-9
  • Doymaz, İ. (2012). Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conversion and Management, 56, 199–205. https://doi.org/10.1016/j.enconman.2011.11.027
  • Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes (4th ed.). John Wiley & Sons, Inc.
  • Ekechukwu, O. V., & Norton, B. (1999). Review of solar-energy drying systems II: An overview of solar drying technology. Energy Conversion and Management, 40(6), 615–655. https://doi.org/10.1016/S0196-8904(98)00093-4
  • El-Sebaii, A. A., & Shalaby, S. M. (2013). Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy Conversion and Management, 74, 109–116. https://doi.org/10.1016/j.enconman.2013.05.006
  • EMA, Ethiopian Meterological Agency. (2021). Metrological Data of Addis Ababa. Ethiopian Meterological Ag.
  • Erbay, Z., & Icier, F. (2009). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464. https://doi.org/10.1080/10408390802437063
  • Ertekin, C., & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
  • Essalhi, H., Tadili, R., & Bargach, M. N. (2017). Conception of a Solar Air Collector for an Indirect Solar Dryer. Pear Drying Test. Energy Procedia, 141, 29–33. https://doi.org/10.1016/j.egypro.2017.11.114
  • Falade, K. O., & Solademi, O. J. (2010). Modelling of air drying of fresh and blanched sweet potato slices. International Journal of Food Science & Technology, 45(2), 278–288. https://doi.org/10.1111/j.1365-2621.2009.02133.x
  • Forson, F. K., Akuffo, F. O., & Nazha, M. A. A. (1996). Natural convection solar crop-dryers of commercial scale in Ghana: Design, construction and performance. International Journal of Ambient Energy, 17(3), 123–130. https://doi.org/10.1080/01430750.1996.9675231
  • Forson, F. K., Nazha, M. A. A., Akuffo, F. O., & Rajakaruna, H. (2007). Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb. Renewable Energy, 32(14), 2306–2319. https://doi.org/10.1016/j.renene.2006.12.003
  • Guiné, R. P. F., Pinho, S., & Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita maxima). Food and Bioproducts Processing, 89(4), 422–428. https://doi.org/10.1016/j.fbp.2010.09.001
  • Hacıhafızoğlu, O., Cihan, A., & Kahveci, K. (2008). Mathematical modelling of drying of thin layer rough rice. Food and Bioproducts Processing, 86(4), 268–275. https://doi.org/10.1016/j.fbp.2008.01.002
  • Henderson, S. M., & Pabis, S. (1961). Grain drying theory II: Temperature effects on drying coefficients. Journal of Agricultural Engineering Research, 6(13), 169–174.
  • Jain, D., & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78(4), 1315–1319. https://doi.org/10.1016/j.jfoodeng.2005.12.044
  • Kaleta, A., Górnicki, K., Winiczenko, R., & Chojnacka, A. (2013). Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67, 179–185. https://doi.org/10.1016/j.enconman.2012.11.011
  • Kavak, A. E., Midilli, A., & Bicer, Y. (2003). Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Conversion and Management, 44(10), 1689–1705. https://doi.org/10.1016/S0196-8904(02)00171-1
  • Kavak, A. E., Sarsılmaz, C., & Yildiz, C. (2004). Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. International Journal of Energy Research, 28(8), 739–752. https://doi.org/10.1002/er.997
  • Lakshimi, D. V. N., Muthukumar, P., Ekka, J. P., Nayak, P. K., & Layek, A. (2019). Performance comparison of mixed mode and indirect mode parallel flow forced convection solar driers for drying Curcuma zedoaria. Journal of Food Process Engineering, 42(4), e13045. https://doi.org/10.1111/jfpe.13045
  • Lakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2018). Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renewable Energy, 120, 23–34. https://doi.org/10.1016/j.renene.2017.12.053
  • Lewis, W. K. (1921). The Rate of Drying of Solid Materials. Journal of Industrial & Engineering Chemistry, 13(5), 427–432. https://doi.org/10.1021/ie50137a021
  • Lingayat, A., Chandramohan, V. P., & Raju, V. R. K. (2017). Design, Development and Performance of Indirect Type Solar Dryer for Banana Drying. Paper presented at the International Conference on Recent Advancement in Air Conditioning and Refrigeration, RAAR 2016, 10-12 November 2016, Bhubaneswar, India, Bhubaneswar, India.
  • Macedo, I. C., & Altemani, C. A. C. (1978). Experimental evaluation of natural convection solar air heaters. Solar Energy, 20(5), 367–369. https://doi.org/10.1016/0038-092X(78)90151-2
  • Madhlopa, A., Jones, S. A., & Kalenga Saka, J. D. (2002). A solar air heater with composite–absorber systems for food dehydration. Renewable Energy, 27(1), 27–37. https://doi.org/10.1016/S0960-1481(01)00174-4
  • Madhlopa, A., & Ngwalo, G. (2007). Solar dryer with thermal storage and biomass-backup heater. Solar Energy, 81(4), 449–462. https://doi.org/10.1016/j.solener.2006.08.008
  • Margaris, D. P., & Ghiaus, A.-G. (2006). Dried product quality improvement by air flow manipulation in tray dryers. Journal of Food Engineering, 75(4), 542=−550. https://doi.org/10.1016/j.jfoodeng.2005.04.037
  • Mathioulakis, E., Karathanos, V. T., & Belessiotis, V. G. (1998). Simulation of Air Movement in a Dryer by Computational Fluid Dynamics: Application for the Drying of Fruits. Journal of Food Engineering, 36(2), 183–200. https://doi.org/10.1016/S0260-8774(98)00026-0
  • Menges, H. O., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of Golden apples. Journal of Food Engineering, 77(1), 119–125. https://doi.org/10.1016/j.jfoodeng.2005.06.049
  • Mercer, D. G. (2007). An Introduction to Food Dehydration and Drying.
  • Midilli, A., & Kucuk, H. Mathematical modeling of thin layer drying of pistachio by using solar energy. (2003). Energy Conversion and Management, 44(7), 1111–1122. 2003. https://doi.org/10.1016/S0196-8904(02)00099-7
  • Midilli, A., Kucuk, H., & Yapar, Z. (2002). A NEW MODEL FOR SINGLE-LAYER DRYING. Drying Technology, 20(7), 1503–1513. https://doi.org/10.1081/DRT-120005864
  • Misha, S., Mat, S., Ruslan, M. H., Sopian, K., & Salleh, E. (2013). Review on the Application of a Tray Dryer System for Agricultural Products. World Applied Sciences Journal, 22(3), 424–433. https://doi.org/10.5829/idosi.wasj.2013.22.03.343
  • Mujaffar, S., & John, S. (2018). Thin-layerdrying behavior of West Indian lemongrass (Cymbopogan citratus) leaves. In Food Science & Nutrition (pp. 1–15). https://doi.org/10.1002/fsn3.642
  • Musembia, M. N., Kiptoob, K. S., & Yuichi, N. (2016). Design and analysis of solar dryer for mid-latitude region. Paper presented at the 3rd International Conference on Power and Energy Systems Engineering, CPESE, 8-12 September, Kitakyushu, Japan. https://doi.org/10.1016/j.egypro.2016.10.145
  • Naderinezhad, S., Etesami, N., Najafabady, A. P., & Falavarjani, M. G. (2016). Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Science & Nutrition, 4(1), 110–118. https://doi.org/10.1002/fsn3.258
  • Nasri, F. (2020). Solar thermal drying performance analysis of banana and peach in the region of Gafsa (Tunisia). Case Studies in Thermal Engineering, 22, 100771. https://doi.org/10.1016/j.csite.2020.100771
  • Olurin, T. O., Adelekan, A. O., & Olosunde, W. A. (2012). Mathematical modeling of drying characterstics of blanched field pumpkin (Cucurbita peop L) slices. Agricultural Engineering International: CIGR Journal, 14(4), 246–254. https://doi.org/10.1111/1541-4337.12196
  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. https://doi.org/10.1111/1541-4337.12196
  • Overhults, D. G., White, M., Hamilton, H., G., . E., & Ross, I, J. (1973). Drying Soybeans With Heated Air. Transactions of the ASAE, 16(1), 112–0113. https://doi.org/10.13031/2013.37459
  • Page, C. (1949). Factors Influencing the Maximum Rates of Air-Drying of Shelled Corn in Thin Layer. (Msc Unpublished), Prudue University, Lafayetle
  • Pawar, R. S., Takwale, M. G., & Bhide, V. G. (1994). Evaluation of the performance of the solar air heater. Energy Conversion and Management, 35(8), 699–708. https://doi.org/10.1016/0196-8904(94)90054-X
  • Poonia, S., Singh, A. K., & Jain, D. (2018). Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Engineering, 5(1), 1–18. https://doi.org/10.1080/23311916.2018.1507084
  • Rao, M. A., Rizvi, S. S. H., & Datta, A. K. (2005). Engineering Properties of Foods (Third ed. ed.). CRC Press Taylor & Francis Group.
  • Rayaguru, K., & Routray, W. (2012). Mathematical modeling of thin layer drying kinetics of stone apple slices. International Food Research Journal, 19(4), 1503–1510.
  • Royen, M. J., Noori, A. W., & Haydary, J. (2020). Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes, 8(12), 2–17. https://doi.org/10.3390/pr8121562
  • Sharaf-Eldeen, Y. I., . L., Blaisdell, J., & Hamdy, M, Y. (1980). A Model for Ear Corn Drying. Transactions of the ASAE, 23(5), 1261–1265. https://doi.org/10.13031/2013.34757
  • Sobukola, O. P., Dairo, O. U., Sanni, L. O., Odunewu, A. V., & Fafiolu, B. O. (2007). Thin Layer Drying Process of Some Leafy Vegetables under Open Sun. Food Science and Technology International, 13(1), 35–40. https://doi.org/10.1177/1082013207075953
  • Tesfay, A. H., Kahsay, M. B., & Nydala, O. J. (2014). Solar powered heat storage for Injera baking in Ethiopia. Paper presented at the 2013 ISES Solar World Congress. International Solar Energy Society (ISES): Cancun, Mexico.
  • Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91(3), 482–489. https://doi.org/10.1016/j.jfoodeng.2008.09.031
  • Toğrul, İ. T., & Pehlivan, D. (2004). Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), 413–425. https://doi.org/10.1016/j.jfoodeng.2004.02.001
  • Verma, L. R., Bucklin, A., Endan, J, R., . B., & Wratten, F, T. (1985). Effects of Drying Air Parameters on Rice Drying Models. Transactions of the ASAE, 28(1), 296–0301. https://doi.org/10.13031/2013.32245
  • Wang, W. L., Ming, H., Emam, R. H., Wang, Y., & Yang, L. (2018). Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Applied Thermal Engineering, 134, 310–321. https://doi.org/10.1016/j.applthermaleng.2018.01.115
  • Yagcioglu, A., Degirmencloglu, A., & Cagatay, F. (1999). Drying characterstics of Laurel leaves under different drying conditions. Paper presented at the 7th International Congress on Agricultural Mechanisation and Energy 26–27, Adana, Turkey.
  • Zewdu, A. (2012). Improvement of injera shelf life through the use of chemcial preservatives. African Journal of Food, Agriculture, Nutrition and Development, 12(5), 6409–6423.