6,762
Views
14
CrossRef citations to date
0
Altmetric
COMPUTER SCIENCE

Battling COVID-19 using machine learning: A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 1958666 | Received 03 Jun 2021, Accepted 15 Jul 2021, Published online: 11 Aug 2021

References

  • A. K, M. I. Y., & Routray, A. (2019). Automatic measurement of speech breathing rate. 2019 27th European Signal Processing Conference (EUSIPCO), 1–41, https://doi.org/10.23919/EUSIPCO.2019.8902730.
  • Wikipedia database downloaod. 2020. [Online]. Retrieved https://en.wikipedia.org/wiki/Wikipedia:Database_download
  • Abbaszadeh Shahri, A., Asheghi, R., & Khorsand Zak, M. (2021). A hybridized intelligence model to improve the predictability level of strength index parameters of rocks. Neural Computing and Applications, 33(8), 3841–3854. https://doi.org/10.1007/s00521-020-05223-9
  • Abbaszadeh Shahri, A., Kheiri, A., & Hamzeh, A. (2021). Subsurface topographic modeling using geospatial and data driven algorithm. ISPRS International Journal of Geo-Information, 10(5), 341. https://doi.org/10.3390/ijgi10050341
  • Abbaszadeh Shahri, A., & Maghsoudi Moud, F. (2020). Liquefaction potential analysis using hybrid multi-objective intelligence model. Environmental Earth Sciences, 79(19), 1–17. https://doi.org/10.1007/s12665-020-09173-2
  • Abbaszadeh Shahri, A., & Maghsoudi Moud, F. (2021). Landslide susceptibility mapping using hybridized block modular intelligence model. Bulletin of Engineering Geology and the Environment, 80(1), 267–284. https://doi.org/10.1007/s10064-020-01922-8
  • Abderrahim, E., Xavier, D., Zakaria, L., & Olivier, L. (2014). Nonlocal infinity Laplacian equation on graphs with applications in image processing and machine learning. Mathematics and Computers in Simulation, 102, 153–163. https://doi.org/10.1016/j.matcom.2014.01.007
  • Ahmad, A., Garhwal, S., Ray, S. K., Kumar, G., Malebary, S. J., & Barukab, O. M. (2020). The number of confirmed cases of covid-19 by using machine learning: methods and challenges. Arch. Comput. Methods Eng, 0123456789. https://doi.org/10.1007/s11831-020-09472-8
  • Ahuja, A. S., Reddy, V. P., & Marques, O. (2020). Artificial intelligence and COVID-19: A multidisciplinary approach. Integrative Medicine Research, 9(3), 100434. https://doi.org/10.1016/j.imr.2020.100434
  • Al Hossain, F., Lover, A. A., Corey, G. A., Reich, N. G., & Rahman, T. (2020). FluSense: A contactless syndromic surveillance platform for influenza-like illness in hospital waiting areas. Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol, 4(1), 1–28. https://doi.org/10.1145/3381014
  • Alafif, T., Tehame, A. M., Bajaba, S., Barnawi, A., & Zia, S. (2021). Machine and deep learning towards covid-19 diagnosis and treatment: Survey, challenges, and future directions. International Journal of Environmental Research and Public Health, 18(3), 1–24. https://doi.org/10.3390/ijerph18031117
  • Allam, Z., & Jones, D. S. (2020). On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Healthcare, 8(1), 1. https://doi.org/10.3390/healthcare8010046
  • Allen-Institute. (March. 2020). CORD-19 research challenge. . [On- line]. Retrieved https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challeng%e
  • Almeshal, M., Almazrouee, A. I., Alenizi, M. R., & Alhajeri, S. N. (2020). Forecasting the spread of COVID-19 in Kuwait using compartmental and logistic regression models. Applied Sciences, 10(10), 3402. https://doi.org/10.3390/app10103402
  • Analytics, H. I. (2020). Deep learning models can detect COVID-19 in Chest CT Scans. Retrieved https://healthitanalytics.com/news/deep-learning-models-can-detect-covid-19-in-chest-ct-scans
  • Anter, A. M., Oliva, D., Thakare, A., & Zhang, Z. (2021). AFCM-LSMA: New intelligent model based on Lévy slime mould algorithm and adaptive fuzzy C-means for identification of COVID-19 infection from chest X-ray images. Advanced Engineering Informatics, 49, 101317. https://doi.org/10.1016/j.aei.2021.101317
  • Anwar, M. U., et al. (2020). Combined deep learning and molecular docking simulations approach identifies potentially effective FDA approved drugs for repurposing against SARS-CoV-2. ChemRxiv, 12227363.v1. https://doi.org/10.26434/chemrxiv.
  • Apostolopoulos, I. D., Aznaouridis, S. I., & Tzani, M. A. (2020). Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. Journal of Medical and Biological Engineering, 40(3), 462–469. https://doi.org/10.1007/s40846-020-00529-4
  • Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43(2), 635–640. https://doi.org/10.1007/s13246-020-00865-4
  • Aramaki, E., Maskawa, S., & Morita, M. (2011). Twitter catches the flu: Detect-ing influenza epidemics using Twitter. In Proc. conf. empirical methods natural lang. process (pp. 1568–1576). Association for Computational Linguistics.
  • Arpaci, I., Huang, S., Al-Emran, M., Al-Kabi, M. N., & Peng, M. Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms. (2019, December). Multimed. Tools Appl, 11943–11957. 2021, https://doi.org/10.1007/s11042-020-10340-7.
  • Asheghi, R., Hosseini, S. A., Saneie, M., & Shahri, A. A. (2020). Updating the neural network sediment load models using different sensitivity analysis methods: A regional application. Journal of Hydroinformatics, 22(3), 562–577. https://doi.org/10.2166/hydro.2020.098
  • Assery, N., Xiaohong, Y., Almalki, S., Kaushik, R., & Xiuli, Q. (2019). Comparing learning-based methods for identifying disaster-related tweets. 2019 18th IEEE international conference on machine learning and applications (ICMLA).
  • B, C. et al. Coronasurveys: Monitoring COVID-19 incidence via open polls. Retrieved April 23, 2021. http://coronasurveys.com
  • Bagad, P., et al. (2020). Cough against COVID: Evidence of COVID-19 signature in cough sounds. arXiv. (Ml).
  • Bai, X., Fang, C., Zhou, Y., Bai, S., Liu, Z., Xia, L., Chen, Q., Xu, Y., Xia, T., Gong, S., Xie, X., Song, D., Du, R., Zhou, C., Chen, C., Nie, D., Qin, L., & Chen, W. (2020). Predicting COVID-19 malignant progression with AI techniques. SSRN Electronic Journal.
  • Bandyopadhyay, S., & DUTTA, S. (2020, June). Detection of fraud transactions using recurrent neural network during COVID-19. Journal of Advanced Research in Medical Science & Technology, 07(3), 16–21. https://doi.org/10.20944/PREPRINTS202006.0368.V1
  • Banerjee, A., et al. (2020). Use of machine learning and artificial intelligence to predict SARS-CoV-2 infection from full blood counts in a population. International Immunopharmacology, 86, 106705. https://doi.org/10.1016/j.intimp.2020.106705
  • Barragán, D., & Manero, J. (2020). How big data and artificial intelligence can help against COVID-19. IE Bus. Sch, 4–11. Available, https://www.ie.edu/business-school/news-and-events/whats-going-on/big-data-artificial-intelligence-can-help-covid-19/
  • Basu, S., & Mitra, S. (2020). Deep learning for screening COVID-19 using Chest X-ray Images. In arXiv (pp. 10507). arXiv:2004.
  • COVID Chest-Xray Dataset. (March. 2020). Retrieved https://github.com/ieee8023/covid-chestxray-dataset
  • Beck, B. R., Shin, B., Choi, Y., Park, S., & Kang, K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, 18, 784–790. https://doi.org/10.1016/j.csbj.2020.03.025
  • Bhandari, S., et al. (2020). Logistic regression analysis to predict mortality risk in COVID-19 patients from routine hematologic parameters. Ibnosina J. Med. Biomed. Sci, 12(2), 123.
  • Brinati, D., Campagner, A., Ferrari, D., Locatelli, M., Banfi, G., & Cabitza, F. (2020). Detection of COVID-19 infection from routine blood exams with machine learning: A feasibility study. medRxiv. https://doi.org/10.1101/2020.04.22.20075143
  • Brown, C., Chauhan, J., Grammenos, A., Han, J., Hasthanasombat, A., Spathis, D., Xia, T., Cicuta, P., & Mascolo, C. (2020). Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining.
  • Browning, L., Colling, R., Rakha, E., Rajpoot, N., Rittscher, J., James, J. A., Salto-Tellez, M., Snead, D. R. J., & Verrill, C. (2020). Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID-19 and future crises: The PathLAKE consortium perspective. Journal of Clinical Pathology.
  • Brownlee, J. (n.d.) Sensitivity analysis of dataset size vs. Model performance. Retrieved https://machinelearningmastery.com/sensitivity-analysis-of-dataset-size-vs-model-performance
  • Bullock, J., Luccioni, A., Pham, K. H., Lam, C. S. N., & Luengo-Oroz, M. (2020). Mapping the landscape of artificial intelligence applications against COVID-19. Journal of Artificial Intelligence Research, 69, 807–845. https://doi.org/10.1613/JAIR.1.12162
  • Bung, N., Krishnan, S. R., Bulusu, G., & Roy, A. (2021). De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Medicinal Chemistry, 13(6), 575–585. https://doi.org/10.4155/fmc-2020-0262
  • Butt, C., Gill, J., Chun, D., & Babu, B. A. (2020, April). Deep learning system to screen coronavirus disease 2019 pneumonia. Appl. Intell, 1–7. https://doi.org/10.1007/s10489-020-01714-3
  • Cadotte, M. (March. 2020). Early evidence that COVID-19 government policies reduce urban air pollution. [Online]. Retrieved eartharxiv.org/nhgj3
  • Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C., & Di Napoli, R. (2020). Features, evaluation, and treatment of coronavirus (COVID-19). In references - scientific research publishing.
  • Let’s beat covid-19 - take the survey to help one million doctors. Retrieved https://letsbeatcovid.net
  • Chamola, V., Hassija, V., Gupta, S., Goyal, A., Guizani, M., & Sikdar, B. Disaster and pandemic management using machine learning: a survey. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3044966
  • Chamola, V., Hassija, V., Gupta, V., & Guizani, M. (2020). A comprehensive review of the COVID-19 pandemic and the role of iot, drones, ai, blockchain, and 5g in managing its impact. IEEE Access, 8, 90225–90265. https://doi.org/10.1109/ACCESS.2020.2992341
  • Chen, E., Lerman, K., & Ferrara, E. (March, 2020). COVID-19: the first public coronavirus twitter dataset: semantic scholar. Retrieved April 23, 2021. https://www.semanticscholar.org/paper/COVID-19:-The-First-Public-Coronavirus-Twitter-Chen-Lerman/f03d2034bce849dcc4c4af5b5cbba0e1d2826b94. [Accessed].
  • Chen, J., et al. (2020). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Sci. Rep, 10(1), 1–11. https://doi.org/10.1038/s41598-020-76282-0
  • Chen, J., Li, K., Zhang, Z., Li, K., & Yu, P. S. (2020b). arXiv:2007.02202. A survey on applications of artificial intelligence in fighting against covid-19.
  • Chen, N. C., Drouhard, M., Kocielnik, R., Suh, J., & Aragon, C. R. (2018). Using machine learning to support qualitative coding in social science: Shifting the focus to ambiguity. ACM Transactions on Interactive Intelligent Systems, 8(2), 1–20. https://doi.org/10.1145/3185515
  • Chen, Q., Allot, A., & Lu, Z. (2020). Keep up with the latest coronavirus research. Nature, 579(7798), 193. https://doi.org/10.1038/d41586-020-00694-1
  • Chen, T., Peng, L., Yin, X., Rong, J., Yang, J., & Cong, G. (2020). Analysis of user satisfaction with online education platforms in China during the COVID-19 pandemic. Healthcare, 8(3), 3. https://doi.org/10.3390/healthcare8030200
  • Chen, Y., & Liu, Y. (2021). Which risk factors matter more for psychological distress during the COVID-19 pandemic? an application approach of gradient boosting decision trees. International Journal of Environmental Research and Public Health, 18(11), 5879. https://doi.org/10.3390/ijerph18115879
  • Chhikara, P., Tekchandani, R., Kumar, N., Chamola, V., & Guizani, M. (2021). DCNN-GA: A deep neural net architecture for navigation of UAV in indoor environment. IEEE Internet of Things Journal, 8(6), 4448–4460. https://doi.org/10.1109/JIOT.2020.3027095
  • CHIME. (2020). COVID-19 hospital impact model for epidemics. [Online]. Retrieved https://github.com/CodeForPhilly/chime
  • Cho, S.-B. (2016). Exploiting machine learning techniques for location recognition and prediction with smartphone logs. Neurocomputing, 176, 98–106. https://doi.org/10.1016/j.neucom.2015.02.079
  • Chowdhury, M. E. H., et al. (2020). Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8, 132665–132676. https://doi.org/10.1109/ACCESS.2020.3010287
  • Cohen, J. P., et al. (2020, July). Predicting COVID-19 pneumonia severity on Chest X-ray With Deep Learning. Cureus, 12 (7), e9448–e9448. https://doi.org/10.7759/cureus.9448.
  • Cohen, J. P., Morrison, P., & Dao, L. (2020). COVID-19 image data collec- tion. arXiv 2003.11597. [Online]. Retrieved https://github.com/ieee8023/covid-chestxray-dataset
  • Cosic, K., Popovic, S., Sarlija, M., & Kesedzic, I. (2020). Impact of human disasters and Covid-19 pandemic on mental health: potential of digital psychiatry. Psychiatria Danubina, 32(1), 25–31. https://doi.org/10.24869/psyd.2020.25
  • Ćosić, K., Popović, S., Šarlija, M., Kesedžić, I., & Jovanovic, T. (2020). Artificial intelligence in prediction of mental health disorders induced by the COVID-19 pandemic among health care workers. Croatian Medical Journal, 61(3), 279–288. https://doi.org/10.3325/cmj.2020.61.279
  • COVID-19 Korea Dataset with Patient Routes. (2020). [Online]. Retrieved https://github.com/ThisIsIsaac/Data-Science-for-COVID-19
  • Cranfield University. (2020a). Using artificial intelligence to detect COVID-19 in X-rays. Retrieved https://medicalxpress.com/ne-ws/2020-05-artificial-intelligence-covid-x-rays.html
  • Cranfield University. (2020b). Using machine learning to detect COVID-19 in X-rays. Retrieved https://tectales.com/ai/using-ai-to-detect-covid-19-in-x-rays.html
  • Cranfield University. (2020c). Artificial intelligence spots COVID-19 in Chest X-rays. Retrieved https://pharmaphorum.com/news/artificialintelligence-spots-covid-19-from-chest-x-rays
  • Cristobal.baeza. Artificial intelligence to detect COVID-19 in less than a second using x-rays. NEWS BBVA, Retrieved June 10, 2020. https://www.bbva.com/en/artificial-intelligence-to-detect-covid-19-in-less-than-a-second-using-x-rays
  • CSSEGISandData. (March. 2020). CSSEGISandData/COVID-19. [Online]. Retrieved https://github.com/CSSEGISandData/COVID-19
  • CSSEGISandData. CSSEGISandData/COVID-19. GitHub.-[Online]. Retrieved April 22, 2021. https://github.com/CSSEGISandData/COVID-19
  • Culotta, A. (2010). Towards detecting influenza epidemics by analyzing Twit- ter messages. In Proc. 1st workshop social media analytics (pp. 115–122).
  • Das, D., Santosh, K. C., & Pal, U. (2020). Truncated inception net: COVID-19 outbreak screening using chest X-rays. Physical and Engineering Sciences in Medicine, 43(3), 915–925. https://doi.org/10.1007/s13246-020-00888-x
  • Dasgupta, A. et al. (2020). Epidemiological challenges in pandemic coronavirus disease (covid-19): role of artificial intelligence. Preprints, (May), n/a. https://doi.org/10.20944/preprints202005.0234.v1.
  • Cov-clear | Citizen science to help track and clear covid. 2020. [Online]. Retrieved https://cov-clear.com
  • de Freitas Barbosa, V. A., et al. (2021, December).Heg.IA: An intelligent system to support diagnosis of Covid-19 based on blood tests. Research on Biomedical Engineering, https://doi.org/10.1007/s42600-020-00112-5.
  • de Souza, F. S. H., Hojo-Souza, N. S., dos Santos, E. B., Da Silva, C. M., & Guidoni, D. L. (2020). Predicting the disease outcome in COVID-19 positive patients through Machine Learning: A retrospective cohort study with Brazilian data. In medRxiv January.
  • Decario, O. What can COVID-19 teach us about using AI in pandemics?. Retrieved December 1, 2020. https://www.wired.com/story/opinion-ai-can-help-find-scientists-find-a-covid-19-vaccine/ A. Senior, J. Jumper, D. Hassabis, and D. Kohli, “AlphaFold: Using AI for scientific discovery,” Deepmind.
  • Deoras, S. How ML is assisting in development of covid-19 vaccines. [Online]. Retrieved https://analyticsindiamag.com/how-ml-is-assisting-in-development-of-covid-19-vaccines
  • Deshpande, G., & Schuller, B. (2020). An overview on audio, signal, speech, & language processing for covid-19. In arXiv preprint arXiv:2005.08579.
  • Dong, D., et al. (2021). The role of imaging in the detection and management of COVID-19: A Review. IEEE Reviews in Biomedical Engineering, 14, 16–29. https://doi.org/10.1109/RBME.2020.2990959
  • ECDC. (2020). European centre for disease prevention and control (ECDC). [Online]. Retrieved: https://ourworldindata.org/coronavirus-source-data
  • Echenique, A. (2020). Chest X-ray findings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: A normal chest X-ray is no guarantee contrast reaction view project pancreatic IRE View project. Journal Urgent Care Med, (May), 13–18.
  • Data world. 2020. [Online]. Retrieved https://data.world/datasets/mobile
  • Ehrlich, J., & Ghimire, S. (2020). COVID-19 countermeasures, major league baseball, and the home field advantage: Simulating the 2020 season using logit regression and a neural network [version 1; peer review: Awaiting peer review]. F1000Research, 9(414), 414. https://doi.org/10.12688/f1000research.23694.1
  • Ekum, M., & Ogunsanya, A. (2020). Application of hierarchical polynomial regression models to predict transmission of COVID-19 at global level. Int J Clin Biostat Biom, 6(1), 27.
  • Elhoseny, M. (2019). Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems. Circuits, Systems, and Signal Processing, 39(2), 611–630. https://doi.org/10.1007/s00034-019-01234-7
  • Elsi, Z. R. S., et al. (2020). Utilization of data mining techniques in national food security during the Covid-19 pandemic in Indonesia,”. Journal of Physics. Conference Series, 1594(1), 12007.
  • Estrada, M. A. R. (2020). The uses of drones in case of massive epidemics contagious diseases relief humanitarian aid: wuhan-COVID-19 Crisis. SSRN Electronic Journal.
  • European Society of Medical Imaging Informatics. Automated diagnosis and quantitative analysis of COVID-19 on Imaging. [Online]. Retrieved https://imagingcovid19ai.eu
  • Federico, C., et al. (2020, January). Development, evaluation, and validation of machine learning models for COVID-19 detection based on routine blood tests. medRxiv, 2020.10.02.20205070. https://doi.org/10.1101/2020.10.02.20205070.
  • Artificial intelligence in radiology. [Online]. Retrieved: https://mosmed.ai/datasets/covid19_1110
  • Flinders University. (2020). Microsoft’s AI for health supports COVID-19 vaccine. Retrieved https://medicalxpress.com/news/2020-08-microsoft-ai-health-covid-vaccine.html
  • E. A. Foundation. (June. 2020). Covid19 impact survey. [Online]. Retrieved https://covid19impactsurvey.org
  • G. Inc. (March. 2020). COVID-19 community mobility reports. [Online]. Retrieved https://www.google.com/covid19/mobility
  • Gale, W. A. (1988). Artificial intelligence and statistics. Addison-Wesley.
  • LitCovid - NCBI - NLM – NIH. National Center for Biotechnology Infmation. Retrieved:https://www.ncbi.nlm.nih.gov/research/coronavirus
  • Ghamizi, S. et al. (2020). Data-driven simulation and optimization for Covid-19 exit strategies. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3434–3442, https://doi.org/10.1145/3394486.3412863.
  • Ghoshal, B., & Tucker, A. (2020). Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. In arXiv (pp. 1–14).
  • Ginantra, N. L. W. S. R., Indradewi, I. G. A. D., & Hartono, E. (2020). Machine learning approach for Acute Respiratory Infections (ISPA) prediction: Case study indonesia. Journal of Physics: Conference series, vol. 1469, p. 012044.
  • GISAID. (2020). Genomic epidemiology of hCoV-19. [Online]. Retrieved https://www.gisaid.org/epiflu-applications/next-hcov-19-app
  • Goodsell, D. S., et al. (2020). RCSB protein data bank: Enabling biomedical research and drug discovery. Protein Science, 29(1), 52–65. https://doi.org/10.1002/pro.3730
  • Goodwin, B. D., Jaskolski, C., Zhong, C., & Asmani, H. (2020). Intra-model variability in COVID-19 classification using chest x-ray images. In arXiv.
  • Gozes, O., Frid, M., Greenspan, H., & Patrick, D. (2020). arXiv:2003.05037. Rapid AI development cycle for the coronavirus (COVID-19) pandemic : Initial results for automated detection & patient monitoring using deep learning CT image analysis article type : Authors : Summary statement : Key results : List of abbreviati.
  • Grimmer, J., Roberts, M. E., & Stewart, B. M. (2021). Machine learning for social science: an agnostic approach. Annual Review of Political Science, 24(1), 395–419. https://doi.org/10.1146/annurev-polisci-053119-015921
  • Gutierrez, P. A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., & Hervas-Martinez, C. (2016). Ordinal regression methods: survey and experimental study. IEEE Transactions on Knowledge and Data Engineering, 28(1), 127–146. https://doi.org/10.1109/TKDE.2015.2457911
  • Hall, L. O., Paul, R., Goldgof, D. B., & Goldgof, G. M. (2020). Finding COVID-19 from Chest X-rays using Deep Learning on a Small Dataset. In arXiv (pp. 1–8).
  • Hashem, I. A. T., et al. (2020 January). A machine learning solution framework for combatting COVID-19 in smart cities from multiple dimensions. medRxiv, 2020. 05.18.20105577. https://doi.org/10.1101/2020.05.18.20105577.
  • He, T., Heidemeyer, M., Ban, F., Cherkasov, A., & Ester, M. (2017). SimBoost: A read-across approach for predicting drug-target binding affinities using gradient boosting machines. Journal of Cheminformatics, 9(1), 1–14. https://doi.org/10.1186/s13321-017-0209-z
  • Health EUROPA. (2020). Using artificial intelligence to determine COVID-19 severity. Retrieved https://www.healtheuropa.eu/using-artificial-intelligence-to-determine-covid-19-severity/100501
  • Heldt, F. S., et al. (2021). Early risk assessment for COVID-19 patients from emergency department data using machine learning. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-83784-y
  • Hemdan, E. E. D., Shouman, M. A., & Karar, M. E. (2020). COVIDX-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images. In arXiv.
  • Herst, C. V., et al. (2020, June). An effective CTL peptide vaccine for ebola zaire based on survivors’ CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design. Vaccine, 38 (28), 4464–4475. https://doi.org/10.1016/j.vaccine.2020.04.034.
  • Hindman, M. (2015, April). Building better models: prediction, replication, and machine learning in the social sciences. The ANNALS of the American Academy of Political and Social Science, 659(1), 48–62. https://doi.org/10.1177/0002716215570279
  • Hofmarcher, M., Mayr, A., Rumetshofer, E., Ruch, P., Renz, P., Schimunek, J., Seidl, P., Vall, A., Widrich, M., Hochreiter, S., & Klambauer, G. (2020). Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks. SSRN Electronic Journal.
  • HospiMedica. (2020a). AI-powered COVID-19 cough analyzer app assesses respiratory health and associated risks. Retrieved https://www.hospimedica.com/covid-19/articles/294784217/ai-powered-covid-19-cough-analyzer-app-assesses-respiratory-health-and-associated-risks.html
  • HospiMedica. (2020b). Scientists use cloud-based supercomputing and AI to develop COVID-19 treatments and vaccine models. Retrieved https://www.hospimedica.com/covid19/articles/294784537/scientists-use-cloud-based-supercomputingand-ai-to-develop-covid-19-treatments-and-vaccine-models.html
  • Hossain, M. M., & McKyerand P. Ma, E. L. J. Applications of artificial intelligence technologies on mental health research during COVID-19. Retrieved June 23, 2020. osf.io/preprints/socarxiv/w6c9b
  • Hu, F., Jiang, J., & Yin, P. (2020). Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model. In arXiv (pp. 1–8).
  • Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2021). DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics, 36(22–23), 5545–5547. https://doi.org/10.1093/bioinformatics/btaa1005
  • Huang, L., Han, R., Ai, T., Yu, P., Kang, H., Tao, Q., & Xia, L. (2020). Serial quantitative chest ct assessment of covid-19: Deep-learning approach. Radiology: Cardiothoracic Imaging, 2(2), e200075. https://doi.org/10.1148/ryct.2020200075
  • Ilyas, M., Rehman, H., & Nait-ali, A. (2020). Detection of Covid-19 From chest x-ray images using artificial intelligence: An early review. In arXiv (pp. 1–8).
  • Imran, A., et al. (2020). AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Informatics in Medicine Unlocked, 20, 100378. https://doi.org/10.1016/j.imu.2020.100378
  • Institute for Protein Design. 2020. Rosetta’s Role in Fighting Covid-19. Retrieved https://www.ipd.uw.edu/2020/02/rosettas-role-in-fighting-coronavirus
  • Iqbal, M. Z., & Faiz, M. F. I. (2020). Active surveillance for COVID-19 through artificial intelligence using real-time speech-recognition mobile application. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), pp. 1–2, https://doi.org/10.1109/ICCE-Taiwan49838.2020.9258276.
  • Iwendi, C., et al. (2020). COVID-19 patient health prediction using boosted random forest algorithm. Frontiers in Public Health, 8, 357. https://doi.org/10.3389/fpubh.2020.00357
  • Jin, C., Chen, W., Cao, Y., Xu, Z., Tan, Z., Zhang, X., Deng, L., Zheng, C., Zhou, J., Shi, H., & Feng, J. (2020). Development and evaluation of an artificial intelligence system for COVID-19 diagnosis. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-18685-1
  • Jin, S., et al. (2020). AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv, 1–22. https://doi.org/10.1101/2020.03.19.20039354.
  • Johnstone, S. (2020). A viral warning for change. the wuhan coronavirus versus the red cross: better solutions via blockchain and artificial intelligence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3530756
  • Kadioglu, O., Saeed, M., Greten, H. J., & Efferth, T. (2021). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Computers in Biology and Medicine, 133(March), 104359. https://doi.org/10.1016/j.compbiomed.2021.104359
  • Kan, A. (2017). Machine learning applications in cell image analysis. Immunology & Cell Biology, 95(6), 525–530. https://doi.org/10.1038/icb.2017.16
  • Kang, J., Chen, T., Luo, H., Luo, Y., & Du, G. (2021). Machine learning predictive model for severe COVID-19. Infection, Genetics and Evolution, 90(December 2020), 104737. https://doi.org/10.1016/j.meegid.2021.104737
  • Kannan, S., Subbaram, K., Ali, S., & Kannan, H. (2020). The role of artificial intelligence and machine learning techniques: Race for COVID-19 vaccine. Archives of Clinical Infectious Diseases, 15(2). https://doi.org/10.5812/archcid.103232
  • Kantardzic, M. (2020). Data mining: Concepts, models, methods, and algorithms. Amazon. Available https://www.amazon.com/Data-Mining-Concepts-Methods-Algorithms/dp/0470890452
  • Kazancioglu, S., Bastug, A., Ozbay, B. O., Kemirtlek, N., & Bodur, H. (2020). The role of haematological parameters in patients with COVID-19 and influenza virus infection. Epidemiology and Infection, 148, e272. https://doi.org/10.1017/S095026882000271X
  • Khandelwal, P., Khandelwal, A., Agarwal, S., Thomas, D., Xavier, N., & Raghuraman, A. (2020). Using computer vision to enhance safety of workforce in manufacturing in a post COVID world. In arXiv (pp. 1–7).
  • Khattar, A., Jain, P. R., & Quadri, S. M. K. (2020). Effects of the disastrous pandemic COVID 19 on learning styles, activities and mental health of young indian students - a machine learning approach. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1190–1195, https://doi.org/10.1109/ICICCS48265.2020.9120955.
  • Kinsa Health. U.S. health weather map. (March. 2020). [Online]. Retrieved https://healthweather.us/?mode=Atypical
  • Kojima, R., Ishida, S., Ohta, M., Iwata, H., Honma, T., & Okuno, Y. (2020). KGCN: A graph-based deep learning framework for chemical structures. Journal of Cheminformatics, 12(1), 1–10. https://doi.org/10.1186/s13321-020-00435-6
  • Koubaa, A. Understanding the COVID19 outbreak: A comparative data analytics and study. arXiv.org. 29-Mar-2020. Retrieved April 23, 2021. https://arxiv.org/abs/2003.14150
  • Kumar, A., Gupta, P., & Srivastava, A. (2020). A review of modern technologies for tackling COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 569–573. https://doi.org/10.1016/j.dsx.2020.05.008. Available
  • Kumar, S. N., Ahilan, A., Fred, A. L., & Kumar, H. A. (2021). ROI extraction in CT lung images of COVID-19 using Fast Fuzzy C means clustering. In Biomedical engineering tools for management for patients with COVID-19 (pp. 103–119). Elsevier.
  • Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons, and Fractals, 139, 110059. https://doi.org/10.1016/j.chaos.2020.110059
  • Lampos, V., De Bie, T., & Cristianini, N. (2010). Flu detector-tracking epi- demics on Twitter. In Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases (pp. 599–602).
  • Larson, E. C., Lee, T., Liu, S., Rosenfeld, M., & Patel, S. N. (2011). Accurate and privacy preserving cough sensing using a low-cost microphone. Proceedings of the 13th international conference on Ubiquitous computing - UbiComp 11.
  • Latif, S., et al. (2020, August). Leveraging data science to combat COVID-19: A comprehensive review. IEEE Transactions on Artificial Intelligence, 1 (1), 85–103. https://doi.org/10.1109/TAI.2020.3020521.
  • Le, D.-N., Parvathy, V. S., Gupta, D., Khanna, A., Rodrigues, J. J. P. C., & Shankar, K. (2021). IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-020-01248-7
  • Lee, S. W., et al. (2020). CareCall: A call-based active monitoring dialog agent for managing COVID-19 pandemic. arXiv.
  • Li, L., et al. (2020, August). Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary ct: evaluation of the diagnostic accuracy. Radiology, 296 (2), E65–E71. https://doi.org/10.1148/radiol.2020200905.
  • Li, S., Wang, Y., Xue, J., Zhao, N., & Zhu, T. (2020). The impact of COVID-19 epidemic declaration on psychological consequences: A study on active weibo users. International Journal of Environmental Research and Public Health, 17, 6. https://doi.org/10.3390/ijerph17062032
  • Loey, M., Manogaran, G., Taha, M. H. N., & Khalifa, N. E. M. (2021). A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement, 167, 108288. https://doi.org/10.1016/j.measurement.2020.108288
  • Loey, M., Smarandache, F., & Khalifa, N. E. M. (2020). Within the lack of chest COVID-19 X-ray dataset: A novel detection model based on GAN and deep transfer learning. Symmetry, 12(4), 4. https://doi.org/10.3390/sym12040651
  • Luengo-Oroz, M., et al. (2020). Artificial intelligence cooperation to support the global response to COVID-19. Nature Machine Intelligence, 2(6), 295–297. https://doi.org/10.1038/s42256-020-0184-3
  • Luoh, L. (2013). ZigBee-based intelligent indoor positioning system soft computing. Soft Computing, 18(3), 443–456. https://doi.org/10.1007/s00500-013-1067-x
  • Maghdid, H. S., Asaad, A. T., Ghafoor, K. Z., Sadiq, A. S., & Khan, M. K. (2021). Diagnosing COVID-19 pneumonia from x-ray and ct images using deep learning and transfer learning algorithms. In Multimodal Image Exploitation and Learning (Vol. 11734, pp. 117340E). International Society for Optics and Photonics.
  • Maia, M., Pimentel, J. S., Pereira, I. S., Gondim, J., Barreto, M. E., & Ara, A. (2020). Convolutional support vector models: Prediction of coronavirus disease using chest x-rays. Inf, 11(12), 1–19. https://doi.org/10.3390/info11120548
  • Mangal, A., et al. (2020). CovidAID: COVID-19 detection using chest X-ray. arXiv (pp. 1–10).
  • Manning, C. (2016). Understanding human language: Can NLP and deep learning help? In Proc. 39th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval (pp. 1).
  • Martinez-Alvarez, M., et al. (2020). COVID-19 pandemic in west Africa. The Lancet Global Health, 8(5), e631–e632. https://doi.org/10.1016/S2214-109X(20)30123-6
  • Mashamba-Thompson, T. P., & Crayton, E. D. (2020). Blockchain and Artificial Intelligence Technology for Novel Coronavirus Disease 2019 Self-Testing. Diagnostics, 10(4), 4. https://doi.org/10.3390/diagnostics10040198
  • May Tzuc, O., Bassam, A., Ricalde, L. J., & Cruz May, E., (2019). Chapter 10 - sensitivity analysis with artificial neural networks for operation of photovoltaic systems, A. Y. Alanis, N. Arana-Daniel, & C. B. T.-A. N. N. F. E.-A. López-Franco Eds, Academic Press. 127–138.
  • MegSeg. (March, 2020). COVID-19 CT segmentation dataset. [Online]. Retrieved http://medicalsegmentation.com/covid19
  • Mei, X., et al. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 26(8), 1224–1228. https://doi.org/10.1038/s41591-020-0931-3
  • Mery, D. (2015). Computer Vision for X-Ray Testing (Vol. 10, pp. 978–3). Springer.
  • Minaee, S., Kafieh, R., Sonka, M., Yazdani, S., & Jamalipour Soufi, G. (2020, October). Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Medical Image Analysis, 65, 101794. https://doi.org/10.1016/j.media.2020.101794
  • Minetto, R., Segundo, M. P., Rotich, G., & Sarkar, S. (2021). Measuring human and economic activity from satellite imagery to support city-scale decision-making during COVID-19 pandemic. IEEE Transactions on Big Data, 7(1), 56–68. https://doi.org/10.1109/TBDATA.2020.3032839
  • Miralles-Pechuán, L., Jiménez, F., Ponce, H., & Martínez-Villaseñor, L. (2020). A deep Q-learning/genetic algorithms based novel methodology for optimizing Covid-19 pandemic government actions. In arXiv Prepr. arXiv2005.07656.
  • Miranda, I. D. S., Diacon, A. H., & Niesler, T. R. (2019). A comparative study of features for acoustic cough detection using deep architectures*. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2601–2605, https://doi.org/10.1109/EMBC.2019.8856412.
  • Mohamadou, Y., Halidou, A., & Kapen, P. T. (2020). A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19. Applied Intelligence, 50(11), 3913–3925. https://doi.org/10.1007/s10489-020-01770-9
  • Mohammadi, F., et al. (2021). Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomedical Journal, (March).https://doi.org/10.1016/j.bj.2021.02.006.
  • Mohanty, S., Harun AI Rashid, M., Mridul, M., Mohanty, C., & Swayamsiddha, S. (2020). Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1027–1031. https://doi.org/10.1016/j.dsx.2020.06.068
  • More, S., et al. (2020). Security assured CNN-based model for reconstruction of medical images on the internet of healthcare things. IEEE Access, 8, 126333–126346. https://doi.org/10.1109/ACCESS.2020.3006346
  • Mori, K., Wada, T., & Ohtsuki, K. (2016). A new disaster recognition algorithm based on SVM for ERESS: Buffering and bagging-SVM. 2016 45th International Conference on Parallel Processing Workshops (ICPPW).
  • Moskal, M., et al. (2020). Suggestions for second-pass anti-COVID-19 drugs based on the Artificial Intelligence measures of molecular similarity, shape and pharmacophore distribution. ChemRxiv, 1–22. https://doi.org/10.26434/chemrxiv.12084690.v2.
  • Mowery, C. T., Marson, A., song, Y. S., & Ye, C. J. Improved COVID-19 serology test performance by integrating multiple lateral flow assays using machine learning. (2020, January). medRxiv, 2020. 07.15.20154773, https://doi.org/10.1101/2020.07.15.20154773.
  • Muthya, S., Nair, R. S., Arokiaswamy, T. P., & Prakash, A. Using machine learning to assess Covid-19 risks. (2020, January). medRxiv, 2020. 06.23.20137950, https://doi.org/10.1101/2020.06.23.20137950.
  • Mvd, A. (June, 2020). Covid-19 x rays. [Online]. Retrieved https://www.kaggle.com/andrewmvd/convid19-X-rays
  • Nallanthighal, V. S., Härmä, A., & Strik, H. (2019). Deep sensing of breathing signal during conversational speech. Interspeech, 2019.
  • Narin, A., Kaya, C., & Pamuk, Z. (2020). Department of biomedical engineering, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey. arXiv Prepr. arXiv2003.10849, Retrieved https://arxiv.org/abs/2003.10849
  • Naudé, W. (2020a). Artificial intelligence vs COVID-19: Limitations, constraints and pitfalls. Ai & Society, 35(3), 761–765. https://doi.org/10.1007/s00146-020-00978-0
  • Naudé, W. (2020b). Artificial intelligence versus COVID-19 in developing countries. no. May. .https://www.wider.unu.edu/sites/default/files/Publications/Background-note/PDF/bn2020-4-ai-vs-covid-19-developing-countries.pdf
  • Nawaz, N., Gomes, A. M., & Saldeen, M. A. (2020). Artificial intelligence (AI) applications for library services and resources in COVID-19 pandemic. Journal Crit. Rev, 7(18), 1951–1955. https://doi.org/10.31838/jcr.07.18.244. Available
  • NCBI. (2020). LitCovid. [Online]. Retrieved https://www.ncbi.nlm.nih/gov/research/coronavirus
  • nCoV2019Data. ncov2019 epidemiological data. Coronavirus Dashboard. Retrieved April 23, 2021. https://github.com/beoutbreakprepared/nCoV2019
  • New York University. (2020). App determines COVID-19 disease severity using artificial intelligence, biomarkers. Retrieved https://www.sciencedaily.com/releases/2020/06/200603132529.html
  • Nguyen, D. C., Ding, M., Pathirana, P. N., & Seneviratne, A. (2020). Blockchain and AI-based solutions to combat Coronavirus (COVID-19)-like epidemics: A survey. no. April, 1–15. https://doi.org/10.36227/techrxiv.12121962.v1.
  • Nhsx. (June, 2020). Covid-19 x rays. . [Online]. Retrieved https://nhsx.github.io/covid-chest-imaging-database/
  • Ni, Q., et al. (2020). A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. European Radiology, 30(12), 6517–6527. https://doi.org/10.1007/s00330-020-07044-9
  • NPGEO. (2020). Dataset of infections in germany. [Online]. Retrieved https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a%7b8eb3e0b329dd6_0/data
  • Nytimes. nytimes/covid-19-data. GitHub. Retrieved April 23, 2021. https://github.com/nytimes/covid-19-data
  • Ogundokun, R. O., Lukman, A. F., Kibria, G. B. M., Awotunde, J. B., & Aladeitan, B. B. (2020). Predictive modelling of COVID-19 confirmed cases in Nigeria. Infect. Dis. Model, 5, 543–548.
  • Ong, E., Wong, M. U., Huffman, A., & He, Y. (2020). COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Frontiers in Immunology, 11(July), 1581. https://doi.org/10.3389/fimmu.2020.01581
  • Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine learning in psychometrics and psychological research. Frontiers in Psychology, 10(January), 1–10. https://doi.org/10.3389/fpsyg.2019.02970
  • Öztürk, H., Özgür, A., & Ozkirimli, E. (2018). DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics, 34(17), i821–i829. https://doi.org/10.1093/bioinformatics/bty593
  • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792. https://doi.org/10.1016/j.compbiomed.2020.103792
  • Pahikkala, T., et al. (2015, March). Toward more realistic drug–target interaction predictions. Briefings in Bioinformatics, 16 (2), 325–337. https://doi.org/10.1093/bib/bbu010.
  • Panday, A. (2020). A complete survey on automatically diagnosing COVID-19 In the field of computer vision and a collection of medical images
  • Pandey, G., Chaudhary, P., Gupta, R., & Pal, S. (2020). SEIR and regression model based COVID-19 outbreak predictions in India. In arXiv Prepr. arXiv2004.00958.
  • Pandey, R. et al. (2020). A machine learning application for raising WASH awareness in the times of COVID-19 Pandemic (Preprint). In arXiv preprint arXiv:2003.07074.
  • Pandit, M. K., & Banday, S. A. (2020). SARS n-CoV2-19 detection from chest X-ray images using deep neural networks. International Journal of Pervasive Computing and Communications, 16(5), 419–427. https://doi.org/10.1108/IJPCC-06-2020-0060
  • Partila, P., Tovarek, J., Rozhon, J., & Jalowiczor, J. (2019, May). Human stress detection from the speech in danger situation. Proc.SPIE, 10993. https://doi.org/10.1117/12.2521405.
  • Peiffer-Smadja, N., Maatoug, R., Lescure, F.-X., D’Ortenzio, E., Pineau, J., & King, J.-R. (2020). Machine learning for COVID-19 needs global collaboration and data-sharing. Nature Machine Intelligence, 2(6), 293–294. https://doi.org/10.1038/s42256-020-0181-6
  • Pham, V., Nguyen, D. C., Huynh-The, T., Hwang, W.-J., & Pathirana, P. N. (2020). Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A Survey on the State-of-the-Arts.
  • PhysicsWorld. AI checks CT Scans for COVID-19. 2020. Retrieved https://physicsworld.com/a/ai-checks-ct-scans-forcovid-19
  • Pirouz, B., Nejad, H. J., Violini, G., & Pirouz, B. The role of swab tests to decrease the stress by COVID-19 on the health system using AI, MLR & statistical analysis. (2020, January). medRxiv, 2020. 06.02.20120394, https://doi.org/10.1101/2020.06.02.20120394.
  • Polese, M., Jana, R., Kounev, V., Zhang, K., Deb, S., & Zorzi, M. (2020). Machine learning at the edge: A data-driven architecture with applications to 5g cellular networks. IEEE Transactions on Mobile Computing, 1. https://doi.org/10.1109/TMC.2020.2999852
  • Prachar, M., et al. (2020 January). COVID-19 vaccine candidates: prediction and validation of 174 SARS-CoV-2 Epitopes. bioRxiv, 2020. 03.20.000794. https://doi.org/10.1101/2020.03.20.000794.
  • Prakash Jha, I., Awasthi, R., Kumar, A., Kumar, V., & Sethi, T. (2020). Explainable-Machine-Learning to discover drivers and to predict mental illness during COVID-19. medRxiv, 2020. 07.19.20157164. https://doi.org/10.1101/2020.07.19.20157164.
  • Punn, N. S., Sonbhadra, S. K., & Agarwal, S. (2020). Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques. In arXiv (pp. 1–10).
  • Qi, X., et al. (2020). Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicentre study. medRxiv.
  • Qin, B., & Li, D. (2020). Identifying facemask-wearing condition using image super-resolution with classification network to prevent COVID-19. Sensors, 20(18), 18. https://doi.org/10.3390/s20185236
  • RadBoudumc. (2020). Evaluation of an AI System for detection of COVID-19 on Chest X-ray Images. Retrieved https://www.radboudumc.nl/en/news/2020/evaluation-of-an-ai-system-for-detection-of-covid-19-on-chest-x-ray-images
  • Rahman, M. A., Zaman, N., Asyhari, A. T., Al-Turjman, F., Alam Bhuiyan, M. Z., & Zolkipli, M. F. (2020). Data-driven dynamic clustering framework for mitigating the adverse economic impact of Covid-19 lockdown practices. Sustainable Cities and Society, 62, 102372. https://doi.org/10.1016/j.scs.2020.102372
  • Rahman, M. S., et al. (2020). Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: An in silico approach. Peer Journal, 8, e9572. https://doi.org/10.7717/peerj.9572
  • Rahmatizadeh, S., Valizadeh-Haghi, S., & Dabbagh, A. (2020). The role of artificial intelligence in management of critical COVID-19 patients. J. Cell. Mol. Anesth, 5(1), 16–22. https://doi.org/10.22037/jcma.v5i1.29752
  • Ramsundar, B., Eastman, P., Walters, P., & Pande, V. (2019). Deep learning for the life sciences: Applying deep learning to genomics, microscopy, drug discovery, and more. OReilly.
  • Ranjan, R. (n.d.). “Callibration in machine learning” Retrieved https://medium.com/analytics-vidhya/calibration-in-machine-learning-e7972ac93555
  • Rao, A. S. R. S., & Vazquez, J. A. (2020). Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infection Control & Hospital Epidemiology, 41(7), 826–830. https://doi.org/10.1017/ice.2020.61
  • Rath, S., Tripathy, A., & Tripathy, A. R. (2020). Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1467–1474. https://doi.org/10.1016/j.dsx.2020.07.045
  • Ravelo, J. (2020). This nonprofit needs your cough sounds to detect COVID-1. Retrieved https://www.devex.com/news/this-nonprofit-needs-your-cough-sounds-to-detect-covid-19-97141
  • Razai, M. S., Doerholt, K., Ladhani, S., & Oakeshott, P. (2020). Coronavirus disease 2019 (covid-19): A guide for uk gps. BMJ, 368.
  • Réda, C., Kaufmann, E., & Delahaye-Duriez, A. (2020). Machine learning applications in drug development. Computational and Structural Biotechnology Journal, 18, 241–252. https://doi.org/10.1016/j.csbj.2019.12.006
  • Rees, V. AI and cloud computing used to develop COVID-19 vaccine. Drug Target Review, Retrieved April 8, 2020. https://www.drugtargetreview.com/news/59650/ai-and-cloud-computing-used-to-develop-covid-19-vaccine
  • Ribeiro, M. H. D. M., Da Silva, R. G., Mariani, V. C., & Coelho, L. D. S. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons, and Fractals, 135, 109853. https://doi.org/10.1016/j.chaos.2020.109853
  • Ridley, E. (2020). AI can assess COVID-19 severity on Chest X-rays. Retrieved https://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=129674
  • Rosenbusch, H., Soldner, F., Evans, A. M., & Zeelenberg, M. (2021). Supervised machine learning methods in psychology: A practical introduction with annotated R code. Social and Personality Psychology Compass, 15(2). https://doi.org/10.1111/spc3.12579
  • Sadhukhan, S., Banerjee, S., Das, P., & Sangaiah, A. K. (2018). Producing better disaster management plan in post-disaster situation using social media mining. In Computational Intelligence for multimedia big data on the cloud with engineering applications (pp. 171–183).
  • Sahu, B., Das, P. K., Kabat, M. R., & Kumar, R. (2021). Prevention of Covid-19 affected patient using multi robot cooperation and Q-learning approach: A solution. In Qual. Quant. (pp. 1–29).
  • Sangiorgio, V., & Parisi, F. (2020, October). A multicriteria approach for risk assessment of Covid-19 in urban district lockdown. Safety Science, 130, 104862. https://doi.org/10.1016/j.ssci.2020.104862
  • Saqib, M. (2021). Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regression model. Applied Intelligence, 51(5), 2703–2713. https://doi.org/10.1007/s10489-020-01942-7
  • Sarkar, B., Ullah, M. A., Johora, F. T., Taniya, M. A., & Araf, Y. (2020, January). The essential facts of wuhan novel coronavirus outbreak in china and epitope-based vaccine designing against 2019-nCoV. bioRxiv 02.05.935072. (pp. 2020).
  • Schuller, B. W., Schuller, D. M., Qian, K., Liu, J., Zheng, H., & Li, X. (2020). COVID-19 and computer audition: An overview on what speech & sound analysis could contribute in the SARS-COV-2 corona crisis. arXiv, (March). https://doi.org/10.3389/fdgth.2021.564906
  • Scudellari, M. (2020). Hospitals deploy AI tools to detect COVID-19 on chest scans. Retrieved https://spectrum.ieee.org/the-human-os/biomedical/imaging/hospitals-deploy-ai-tools-detect-covid19-chest-scans
  • Sesagiri Raamkumar, A., Tan, S. G., & Wee, H. L. (2020). Use of health belief model–based deep learning classifiers for covid-19 social media content to examine public perceptions of physical distancing: model development and case study. JMIR Public Health and Surveillance, 6(3), e20493. https://doi.org/10.2196/20493
  • Sethy, P. K., Behera, S. K., Ratha, P. K., & Biswas, P. (2020, April 22). Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. In Preprints (pp. 202003. 0300.v1).
  • Shaikh, F., Andersen, M. B., Sohail, M. R., Mulero, F., Awan, O., Dupont-Roettger, D., Kubassova, O., Dehmeshki, J., & Bisdas, S. (2021). Current landscape of imaging and the potential role for artificial intelligence in the management of COVID-19. Current Problems in Diagnostic Radiology, 50(3), 430–435. https://doi.org/10.1067/j.cpradiol.2020.06.009
  • Sharma, K., Seo, S., Meng, C., Rambhatla, S., Dua, A., & Liu, Y. (2020). arXiv:2003.12309. Coronavirus on social media: Analyzing misinformation in Twitter conversations.
  • Sharma, N., et al. (2020). Coswara - A database of breathing, cough, and voice sounds for COVID-19 diagnosis. Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, 2020-October, 4811–4815. https://doi.org/10.21437/Interspeech.2020-2768
  • Sharma, S., & Gupta, Y. K. (2021, January). Predictive analysis and survey of COVID-19 using machine learning and big data. Journal of Interdisciplinary Mathematics, 24(1), 175–195. https://doi.org/10.1080/09720502.2020.1833445
  • Shi, F. et al. (2020). Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. In IEEE reviews in biomedical engineering.
  • Shi, F., et al. (2021). Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Physics in Medicine and Biology, 66(6), 065031. https://doi.org/10.1088/1361-6560/abe838
  • Shi, Y., et al. (2020). D3Targets-2019-nCoV: A webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharmaceutica Sinica B, 10(7), 1239–1248. https://doi.org/10.1016/j.apsb.2020.04.006
  • Shinde, G. R., Kalamkar, A. B., Mahalle, P. N., Dey, N., Chaki, J., & Hassanien, A. E. (2020). Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art. SN Computer Science, 1(4), 1–15. https://doi.org/10.1007/s42979-020-00209-9
  • Simply, R. M., Dafna, E., & Zigel, Y. (2018). Obstructive sleep apnea (OSA) classification using analysis of breathing sounds during speech,” 2018 26th European Signal Processing Conference (EUSIPCO), pp. 1132–1136.
  • Simsek, M., & Kantarci, B. (2020). Artificial intelligence-empowered mobilization of assessments in COVID-19-like pandemics: A case study for early flattening of the curve. International Journal of Environmental Research and Public Health, 17(10), 10. https://doi.org/10.3390/ijerph17103437
  • SIRM. (2020a). Covid-19-BSTI imaging database. [Online]. Retrieved https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-da%tabase/
  • SIRM. (2020b). COVID-19 DATABASE. [Online]. Retrieved https://www.sirm.org/category/senza-categoria/covid-19
  • Smith, S. (March, 2020). Coronavirus (covid19) tweets. [Online]. Retrieved www.kaggle.com/smid80/coronavirus-covid19-tweets
  • Soares, F., Villavicencio, A., José Anzanello, M., Fogliatto, F. S., Idiart, M. A. P., & Stevenson, M. A novel high specificity COVID-19 screening method based on simple blood exams and artificial intelligence. (2020, January). medRxiv, 2020. 04.10.20061036, https://doi.org/10.1101/2020.04.10.20061036.
  • Soofi, A., & Awan, A. (2017). Classification Techniques in Machine Learning: Applications and Issues. Journal of Basic & Applied Sciences, 13, 459–465. https://doi.org/10.6000/1927-5129.2017.13.76
  • Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3), 185–190. https://doi.org/10.1121/1.1915893
  • sudalairajkumar Data. Novel corona-virus dataset. GitHub. [Online]. Retrieved April 23, 2021. https://github.com/SudalaiRajkumar
  • Sufian, A., Ghosh, A., Sadiq, A. S., & Smarandache, F. (2020). A survey on deep transfer learning to edge computing for mitigating the COVID-19 pandemic. Journal of Systems Architecture, 108, 101830. https://doi.org/10.1016/j.sysarc.2020.101830
  • Sun, -N.-N., et al. (2020, January).A prediction model based on machine learning for diagnosing the early COVID-19 patients. medRxiv, https://doi.org/10.1101/2020.06.03.20120881.
  • TABIP. (2020). Coronavirus vaccine candidate developed in adelaide lab to start human trials. Retrieved https://covid19.tabipacademy.com/2020/07/03/coronavirus-vaccine-candidate-developed-in-adelaide-lab-to-start-human-trials
  • Tang, B., He, F., Liu, D., Fang, M., Wu, Z., & Xu, D. (2020, January). AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. bioRxiv 03.03.972133. (pp. 2020).
  • Tarrataca, L., Dias, C. M., Haddad, D. B., & De Arruda, E. F. (2021). Flattening the curves: On-off lock-down strategies for COVID-19 with an application to Brazil. J. Math. Ind, 11(1). https://doi.org/10.1186/s13362-020-00098-w
  • Tayarani N, M. H. (2021). Applications of artificial intelligence in battling against covid-19: A literature review. Chaos, Solitons, and Fractals, 142, 110338. https://doi.org/10.1016/j.chaos.2020.110338
  • Tschoellitsch, T., Dünser, M., Böck, C., Schwarzbauer, K., & Meier, J. (2020). Machine learning prediction of SARS-CoV-2 polymerase chain reaction results with routine blood tests. Laboratory Medicine. https://doi.org/10.1093/labmed/lmaa111
  • Tsikala Vafea, M., et al. (2020). Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cellular and Molecular Bioengineering, 13(4), 249–257. https://doi.org/10.1007/s12195-020-00629-w
  • Uddin, M. I., Shah, S. A. A., & Al-Khasawneh, M. A. (2020). A novel deep convolutional neural network model to monitor people following guidelines to avoid COVID-19. Journal of Sensors, 2020, 1–15. https://doi.org/10.1155/2020/8856801
  • Ulhaq, A., Khan, A., Gomes, D., & Paul, M. (2020). Computer vision for COVID-19 control: A survey. In arXiv (pp. 1–24).
  • Unberath, M., Ghobadi, K., Levin, S., Hinson, J., & Hager, G. D. (2020). Artificial intelligence-based clinical decision support for COVID-19 – Where Art Thou? Advanced Intelligent Systems, 2(9), 2000104. https://doi.org/10.1002/aisy.202000104
  • Vadyala, S. R., Betgeri, S. N., Sherer, E. A., & Amritphale, A. (2020). Prediction of the number of covid-19 confirmed cases based on k-means-lstm. In arXiv Prepr. arXiv2006.14752.
  • Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337–339. https://doi.org/10.1016/j.dsx.2020.04.012
  • Vamathevan, J., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
  • van der Schaar, M., et al. (2021). How artificial intelligence and machine learning can help healthcare systems respond to COVID-19. Machine Learning, 110(1), 1–14. https://doi.org/10.1007/s10994-020-05928-x
  • VIDA. LungPrint Clinical Solutions. 2020. Retrieved https://vidalung.ai/clinical_solutions
  • W. Inc. 2020. World’s air pollution: Real-time air quality index. [Online]. Retrieved https://waqi.info
  • Wang, B., Sun, Y., Duong, T. Q., Nguyen, L. D., & Hanzo, L. (2020). Risk-aware identification of highly suspected COVID-19 Cases in Social IoT: A joint graph theory and reinforcement learning approach. In IEEE Access, 8, 115655–115661. https://doi.org/10.1109/ACCESS.2020.3003750
  • Wang, D., et al. (2020). Agent-based simulation model and deep learning techniques to evaluate and predict transportation trends around COVID-19 arXiv Prepr. arXiv2010.09648.
  • Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep, 10(1), 1–12. https://doi.org/10.1038/s41598-020-76550-z
  • Wang, L., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. Scientific Reports, 10(1), 1–12.
  • Wang, S., et al., (2021a). A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). European Radiology, 31(8), 6096–6104. https://doi.org/10.1007/s00330-021-07715-1
  • Wang, S., et al. (2021b). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). European Radiology, 1–9.
  • Wang, Y., et al. (2020). Unobtrusive and automatic classification of multiple people’s abnormal respiratory patterns in real time using deep neural network and depth camera. IEEE Internet of Things Journal, 7(9), 8559–8571. https://doi.org/10.1109/JIOT.2020.2991456
  • WHO. 2020. Global research on novel coronavirus-2019. [Online]. Retrieved https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-%research-on-novel-coronavirus-2019/ncov
  • Wu, J., et al. (2020). Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results. medRxiv, https://doi.org/10.1101/2020.04.02.20051136.
  • Wurtzer, S., Marechal, V., Mouchel, J.-M., & Moulin, L. (2020). Time course quantitative detection of sars-cov-2 in parisian wastewaters correlates with covid-19 confirmed cases. medRxiv.
  • Xu, W., Sun, -N.-N., Gao, H.-N., Chen, Z.-Y., Yang, Y., & Tang, -L.-L. Risk factors analysis of COVID-19 patients with ARDS and prediction based on machine learning. Sci. Reports |, 11, 2933. 123AD. https://doi.org/10.1038/s41598-021-82492-x
  • Xue, H., Li, J., Xie, H., & Wang, Y. (2018, July). Review of drug repositioning approaches and resources. International Journal of Biological Sciences, 14(10), 1232–1244. https://doi.org/10.7150/ijbs.24612
  • Yadav, S., Keerthana, M., Gope, D., Maheswari K, U., & Ghosh, P. K. (2020). Analysis of acoustic features for speech sound based classification of asthmatic and healthy subjects. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6789–6793, https://doi.org/10.1109/ICASSP40776.2020.9054062.
  • Yan, L., et al. (2020). A machine learning-based model for survival prediction in patients with severe COVID-19 infection. medRxiv, https://doi.org/10.1101/2020.02.27.20028027.
  • Yang, D., Yurtsever, E., Renganathan, V., Redmill, K. A., & Özgüner, Ü. (2020). A vision-based social distancing and critical density detection system for COVID-19. In arXiv.
  • Yang, H. S., et al. (2020, November). Routine laboratory blood tests predict SARS-CoV-2 infection using machine learning. Clinical Chemistry, 66 (11), 1396–1404. https://doi.org/10.1093/clinchem/hvaa200.
  • Yeşilkanat, C. M. (2020). Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm. Chaos, Solitons, and Fractals, 140, 110210. https://doi.org/10.1016/j.chaos.2020.110210
  • Yin, R., Tran, V. H., Zhou, X., Zheng, J., & Kwoh, C. K. (2018). Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model. Plos One, 13(12), e0207777. https://doi.org/10.1371/journal.pone.0207777
  • Yoo, S. H., et al. (2020). Deep learning-based decision-tree classifier for COVID-19 Diagnosis From Chest X-ray Imaging. Frontiers in Medicine, 7, 427. https://doi.org/10.3389/fmed.2020.00427
  • Zarei, K., Farahbakhsh, R., Crespi, N., & Tyson, G. (2020). arXiv:2004.12226. A first instagram dataset on covid-19.
  • Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., & Cheng, F. (2019, December). deepDR: A network-based deep learning approach to in silico drug repositioning. Bioinformatics, 35(24), 5191–5198. https://doi.org/10.1093/bioinformatics/btz418
  • Zhang, K., et al. (2020, June). Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell, 181 (6), 1423–1433.e11. https://doi.org/10.1016/j.cell.2020.04.045.
  • Zhang, T., & Lin, G. (2021). Generalized k -means in GLMs with applications to the outbreak of COVID-19 in the United States. Computational Statistics & Data Analysis, 159, 107217. https://doi.org/10.1016/j.csda.2021.107217
  • Zhang, W., et al. (2021). Analysis of COVID-19 epidemic and clinical risk factors of patients under epidemiological Markov model. Results in Physics, 22, 103881. https://doi.org/10.1016/j.rinp.2021.103881
  • Zhao, D., et al. (2020). A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clinical Infectious Diseases, 71(15), 756–761. https://doi.org/10.1093/cid/ciaa247
  • Zhao, J., Zhang, Y., He, X., & Xie, P. (2020). arXiv:2003.13865. COVID-CT-Dataset: A CT scan dataset about COVID-19.
  • Zhao, Z., Li, X., Liu, F., Zhu, G., Ma, C., & Wang, L. (2020). Prediction of the covid-19 spread in african countries and implications for prevention and controls: A case study in south africa, egypt, algeria, nigeria, senegal and kenya. Science of the Total Environment, 729, 138959. https://doi.org/10.1016/j.scitotenv.2020.138959. Art.
  • Zhavoronkov, A., et al. (2020a). Potential COVID-2019 3c-like protease in- hibitors designed using generative deep learning approaches. Insilico Medicine Hong Kong Ltd A, 307, E1.
  • Zhavoronkov, A., et al. (2020b). Potential 2019-nCoV 3C-like protease inhibitors designed using generative deep learning approaches. ChemRxiv, (2).https://doi.org/10.26434/chemrxiv.11829102.v2.
  • Zheng, C., et al. (2020). Deep Learning-based Detection for COVID-19 from Chest CT using Weak Label. medRxiv, 1–13. https://doi.org/10.1101/2020.03.12.20027185.