914
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Experimental study for improving unglazed solar system

| (Reviewing editor)
Article: 1961564 | Received 27 Jan 2021, Accepted 10 Jul 2021, Published online: 17 Aug 2021

References

  • Aldabbagh, L. B. Y., Egelioglu, F., & İlkan, M. (2010). Single and double pass solar air heaters with wire mesh as packing bed. Energy, 35(9), 3783–17. https://doi.org/10.1016/j.energy.2010.05.028
  • Badache, M., Rousse, D. R., Hall, E. S., & Quesada, G. (2013). Experimental and numerical simulation of a two-dimensional unglazed transpired solar air collector. Solar Energy, 93(7), 209–219. https://doi.org/10.1016/j.solener.2013.02.036
  • Badache, M., Rousse, D. R., Hallé, S., Quesada, G., & Dutil, Y. (2012). Experimental and two-dimensional numerical simulation of an unglazed transpired solar air collector. Energy Procedia, 30(20), 19–28. https://doi.org/10.1016/j.egypro.2012.11.004
  • Dymond, C., & Kutscher, C. (1997). Development of a flow distribution and design model for transpired solar collectors. Solar Energy, 60(5), 291–300. https://doi.org/10.1016/S0038-092X(96)00157-0
  • Gawlik, K., Christensen, C., & Kutscher, C. (2005). A numerical and experimental investigation of low-conductivity unglazed, transpired solar air heaters. Journal of Solar Energy Engineering, 127(1), 153–155. https://doi.org/10.1115/1.1823494
  • Gawlik, K., & Kutscher, C. (2002). Wind heat loss from corrugated, transpired solar collectors. Journal of Solar Energy Engineering, 124(3), 256–261. https://doi.org/10.1115/1.1487886
  • Gholampour, M., & Ameri, M. (2014). Design considerations of unglazed transpired collectors: Energetic and exergetic studies. Journal of Solar Energy Engineering, 136(3), 31004–31011. https://doi.org/10.1115/1.4026251
  • Greig, D., Siddiqui, K., & Karava, P. (2012). An experimental investigation of the flow structure over a corrugated waveform in a transpired air collector. International Journal of Heat and Fluid Flow, 38(6), 133–144. https://doi.org/10.1016/j.ijheatfluidflow.2012.07.003
  • Gunnewiek, L. H., Brundrett, E., & Hollands, K. G. T. (1996). Flow distribution in unglazed transpired plate solar air heaters of large area. Solar Energy, 58(4–6), 227–237. https://doi.org/10.1016/S0038-092X(96)00083-7
  • Hollick, J. C. (1994). Unglazed solar wall air heaters. Renewable Energy, 5(1–4), 415–421. https://doi.org/10.1016/0960-1481(94)90408-1
  • Incropera, F. P., & De Witt, D. P. (1985). Fundamentals of heat and mass transfer. John Wiley & Sons.
  • Kutscher, C. F. (1994). Heat exchange effectiveness and pressure drop for air flow through perforated plates with and without crosswind. Journal of Heat Transfer, 116(2), 391–399. https://doi.org/10.1115/1.2911411
  • Kutscher, C. F., Christensen, C. B., & Barker, G. M. (1993). Unglazed Transpired Solar Collectors: Heat Loss Theory. Journal of Solar Energy Engineering, 115(3), 182–188. https://doi.org/10.1115/1.2930047
  • Leon, M. A., & Kumar, S. (2007). Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors. Solar Energy, 81(1), 62–75. https://doi.org/10.1016/j.solener.2006.06.017
  • Li, S., Karava, P., Savory, E., & Lin, W. E. (2013). Airflow and thermal analysis of flat and corrugated unglazed transpired solar collectors. Solar Energy, 91(5), 297–315. https://doi.org/10.1016/j.solener.2013.01.028
  • Mahmood, A., “Exergy analysis of flat plate solar air heaters having obstacles and filled with wire mesh layers”, 2nd International Conference on Sustainable Engineering Techniques, Baghdad, Iraq, IOP, pp. 32001–32010, 6–7 March 2019.
  • Naveed, A. T., Kang, E. C., & Lee, E. J. (2006). Effect of unglazed transpired collector on the performance of a polycrystalline silicon photovoltaic module. Journal of Solar Energy Engineering, 128(3), 349–353. https://doi.org/10.1115/1.2212438
  • Nowzari, R., Aldabbagh, L. B. Y., & Egelioglu, F. (2014). Single and double pass solar air heaters with partially perforated cover and packed mesh. Energy, 73(10), 694–702. https://doi.org/10.1016/j.energy.2014.06.069
  • Sözen, A., Şirin, C., Khanlari, A., Tuncer, A. D., & Gürbüz, E. Y. (2020). Thermal performance enhancement of tube-type alternative indirect solar dryer with iron mesh modification. Solar Energy, 207(1), 1269–1281. https://doi.org/10.1016/j.solener.2020.07.072
  • Sözena, A., Kazancıoğlu, F. S., Tuncer, A. D., Khanlarie, A., Bilgec, Y., & Gungor, A. (2021). Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool. Solar Energy, 217(15), 328–341. https://doi.org/10.1016/j.solener.2021.02.029
  • Summers, D. N., 1995, “Thermal simulation and economic assessment of unglazed transpired collector systems,” Master thesis, University of Wisconsin.
  • Van Decker, G. W. E., Hollands, K. G. T., & Brunger, A. P. (2001). Heat-exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch. Solar Energy, 71(1), 33–45. https://doi.org/10.1016/S0038-092X(01)00014-7
  • Vaziri, R., İlkan, M., & Egelioglu, F. (2015). Experimental performance of perforated glazed solar air heaters and unglazed transpired solar air heater. Solar Energy, 119(9), 251–260. https://doi.org/10.1016/j.solener.2015.06.043
  • Zheng, W., Zhang, H., You, S., & Fu, Y. (2017). Experimental investigation of the transpired solar air collectors and metal corrugated packing solar air collectors. Energies, 10(3), 1–12. https://doi.org/10.3390/en10030302