1,511
Views
2
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Investigation of students’ comfort and adaptation in university dormitories in humid subtropical climatic area in winter in Chongqing, China

ORCID Icon & | (Reviewing editor)
Article: 1968740 | Received 28 Feb 2021, Accepted 11 Jul 2021, Published online: 31 Aug 2021

References

  • American Society of Heating, Refrigerating and Air-Conditioning Engineering ASHRAE. (2004). Standard 55–2004. Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineering, ASHRAE.
  • American Society of Heating, Refrigerating and Air-Conditioning Engineering ASHRAE. (2010). Standard 55-2010., Thermal environmental conditions for human occupancy.
  • American Society of Heating, Refrigerating and Air-Conditioning Engineering ASHRAE. (2013). ASHRAE standard 55-2013: Thermal environmental conditions for human occupancy.
  • Andersen, R. V., Toftum, J., Andersen, K. K., & Olesen, B. W. (2009). Survey of occupant behavior and control of indoor environment in Danish dwellings. Energy and Buildings, 41(1), 11–23. https://doi.org/10.1016/j.enbuild.2008.07.004
  • Bouden, C. N., & Grab, N. (2005). An adaptive thermal comfort model for the Tunisian context: A field study results. Energy and Buildings, 37(9), 952–963. https://doi.org/10.1016/j.enbuild.2004.12.003
  • Cao, B., Zhu, Y. X., Li, M., & Ouyang, Q. (2014). Individual and district heating: A comparison of residential heating modes with an analysis of adaptive thermal comfort. Energy and Buildings, 78(2014), 17–24. https://doi.org/10.1016/j.enbuild.2014.03.063
  • Chen, A., & Chang, V. W. C. (2012). Human health and thermal comfort of office workers in Singapore. Buildings and Environment, 58(2012), 172–178. https://doi.org/10.1016/j.buildenv.2012.07.004
  • Cheng, M. J., Hwang, R. L., & Lin, T. P. (2008). Field experiments on thermal comfort requirements for campus dormitories in Taiwan. Indoor and Built Environment, 17(3), 191–202. https://doi.org/10.1177/1420326X08090571
  • De Dear, R. J., Akimoto, T., Arens, E. A., Brager, G. S., Candido, C., Cheong, K. W. D., Li, B., Nishara, N., Shekar, S. C., Tanabe, S., Toftun, J., Zhang, H., & Zhu, Y. (2013). Progress in thermal comfort research over the last twenty years. Indoor Air, 23(6), 442–461. https://doi.org/10.1111/ina.12046
  • Dhaka, S., Mathur, J., Brager, G., & Honnekeri, A. (2015). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Buildings and Environment, 86(2015), 17–28. https://doi.org/10.1016/j.buildenv.2014.11.024
  • Ding, Y., Li, B., Yao, R., Lian, D., & Dai, H. (2012). Solar Energy Resources Used in Building in Chongqing, China. P. R. Rugescu (Ed.). Solar Power. ISBN: 978-953-51-0014-0.
  • Han, J., Yang, W., Zhou, J., Zhang, G., Zhang, Q., & Moschandreas, D. J. (2009). A comparative analysis of urban and rural residential thermal comfort under natural ventilation environment. Energy and Buildings, 41(2), 139–145. https://doi.org/10.1016/j.enbuild.2008.08.005
  • He, Y., Li, N., & Huang, Q. (2015). A field study on thermal environment and occupant local thermal sensation in offices with cooling ceiling in Zhuhai, China. Energy and Buildings, 102,(2015),277–283. https://doi.org/10.1016/j.enbuild.2015.05.058
  • He, Y., Li, N., Peng, J., Zhang, W., & Li, Y. (2016). Field study on adaptive comfort in air-conditioned dormitories of university with hot-humid climate in summer. Energy and Buildings, 119(2016), 1–12. https://doi.org/10.1016/j.enbuild.2016.03.020
  • Kim, J., De Dear, R. J., Parkinson, T., & Candido, C. (2017). Understanding patterns of adaptive comfort behavior in the Sydney mixed-mode residential context energy build. 141(2017), 274–283. https://doi.org/10.1016/j.enbuild.2017.02.061
  • Lee, K., Mui, W., Wong, L. T., Chan, W. Y., Lee, E. W. M., & Cheung, C. T. (2012). Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching room. Build. Environ, 49(2012), 238–244. https://doi.org/10.1016/j.buildenv.2011.10.001
  • Li, B., Tan, M., Liu, H., Ma, X., & Zhang, W. (2010). Occupant’s perception and preference of thermal environment in free-running buildings in China. Indoor. Built Environ, 19(4), 405–412. https://doi.org/10.1177/1420326X10377545
  • Li, J. (2006). An adaptive thermal comfort model for hot summer and cold winter context Xi’an University of Architecture and Technology. (in Chinese).
  • McIntyre, D. A. (1980). Indoor Climate. Applied Science Publishers, LTD.
  • Mishra, A. K., & Ramgopal, M. (2014). Thermal comfort field study in undergraduate laboratories-an analysis of occupant perceptions. Build. Environ, 76(2012), 62–72. https://doi.org/10.1016/j.buildenv.2014.03.005
  • Motlatla, M., & Maluleka, T. X. (2021). Assessment of knowledge about healthcare risk waste management at a tertiary hospital in the Northern Cape, South Africa. Int. J. Environ. Res. Public. Health, 18(2), 449. https://doi.org/10.3390/ijerph18020449
  • Nakano, J., Tanabe, S.-I., & Kimura, K.-I. (2002). Differences in perception of indoor environment between Japanese and non-Japanese workers. Energy. Buil, 34(6), 615–621. https://doi.org/10.1016/S0378-7788(02)00012-9
  • Nicol, F., & Humphreys, M. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy. Build, 34(6), 563–572. https://doi.org/10.1016/S0378-7788(02)00006-3
  • Ning, H., Wang, Z., Zhang, X., & Jia, Y. (2016). Adaptive thermal comfort in university dormitories in the severe cold area of China. Build. Environ, 99(2016), 161–169. https://doi.org/10.1016/j.buildenv.2016.01.003
  • Pidwirny, M. (2016). Climate classification and climate regions of the world. Fundamentals of physical Geography (2nd Edition). University of British Columbia Okanagan. Retrieved from: http://www.physicalgeography.net/fundamentals/7s.html.
  • P. O., F. (1973). Conditions for thermal comfort-a review. In Proceedings of symposium on thermal comfort and moderate heat stress, CIB W45, Garston, Her Majesty's Stationery Office (HMSO). London, UK.
  • Takasu, M., Ooka, R., Rijal, H. B., Indraganti, M., & Singh, M. K. (2017). Study on adaptive thermal comfort in Japanese offices under various operation modes. Build. Environ, 118(2017), 273–288. https://doi.org/10.1016/j.buildenv.2017.02.023
  • Wang, Z., Zhang, L., Zhao, J., He, Y., & Li, A. (2011). Thermal responses to different residential environments in Harbin. Build. Environ, 46(11), 2170–2178. https://doi.org/10.1016/j.buildenv.2011.04.029
  • Wang, Z. J., Ning, H. R., Ji, Y. C., Hou, J., & He, Y. N. (2015). Human thermal physiological and psychological responses under different heating environments. J. Thermal Biology, 52(2015), 177–186. https://doi.org/10.1016/j.jtherbio.2015.06.008
  • Yao, R., Li, B., & Liu, J. (2007). Investigation and analysis on classroom thermal environment in winter in Chongqing. HVAC, 1-2-3(5), 115–117. (in Chinese).
  • Yao, R., Liu, J., & Li, B. (2010). Occupants’ adaptive responses and perception of thermal environment in naturally conditioned university classrooms. App. Energy, 82(3), 1015–1022. https://doi.org/10.1016/j.apenergy.2009.09.028
  • Yu, J., Cao, G., Cui, W., Ouyang, Q., & Zhu, Y. (2013). People who live in a cold climate: Thermal adaptation differences based on availability of heating. Indoor Air, 23(4), 303–310. https://doi.org/10.1111/ina.12025
  • Zhang, N., Cao, B., Wang, Z., Zhu, Y., & Lin, B. (2017). A comparison of winter indoor thermal environment and thermal comfort between regions in Europe, North America, and Asia. Build. Environ, 117(2017), 208–217. https://doi.org/10.1016/j.buildenv.2017.03.006
  • Zhang, Y., Wang, J., Chen, H., Zhang, J., & Meng, Q. (2010). Thermal comfort in naturally ventilated buildings in hot-humid area of China. Build. Environ, 45(11), 2562–2570. https://doi.org/10.1016/j.buildenv.2010.05.024
  • Zhu, Y., Zhang, Y., & Li, B. (2010). Built Environment (3rded). China Architecture & Building Press. (in Chinese).