5,449
Views
12
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Nanoparticles Filled Polymer Nanocomposites: A Technological Review

, ORCID Icon, & | (Reviewing-editor)
Article: 1991229 | Received 29 Jun 2021, Accepted 06 Oct 2021, Published online: 28 Oct 2021

References

  • Abedini, A., Asiyabi, T., Campbell, H. R., Hasanzadeh, R., & Azdast, T. (2019). On fabrication and characteristics of injection molded ABS/Al2O3 nanocomposites. The International Journal of Advanced Manufacturing Technology, 102(5–8), 1747. https://doi.org/10.1007/s00170-019-03311-2
  • Al-Ajaj, I. A., Abd, M. M., & Jaffer, H. I. (2013). Mechanical properties of micro and nano TiO2/epoxy composites. International Journal of Mining and Metallurgy Engineering, 1 (2), 2320. https://scholar.googleusercontent.com/scholar?q=cache:WeX3r9zvC6wJ:scholar.google.com/+Al-Ajaj,+I.+A.,+Abd,+M.+M.,+%26+Jaffer,+H.+I.+(2013).+International+Journal+of+Mining+and+Metallurgy+Engineering,+1,+2320.&hl=en&as_sdt=0,5
  • Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1–2), 1. https://doi.org/10.1016/S0927-796X(00)00012-7
  • Al-Turaif, H. A. (2010). Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Progress in Organic Coatings, 69, 241. https://doi.org/10.1016/j.porgcoat.2010.05.011
  • Ansari, R., Hassanzadeh-Aghdam, M. K., & Darvizeh, A. (2016). On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mechanics of Materials, 101, 14. https://doi.org/10.1016/j.mechmat.2016.07.008
  • Ashraf, M. A., Peng, W., Zare, Y., & Rhee, K. Y. (2018). Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Research Letters, 13(1), 214. https://doi.org/10.1186/s11671-018-2624-0
  • Bazrgari, D., Moztarzadeh, F., Sabbagh-Alvani, A. A., Rasoulianboroujeni, M., Tahriri, M., & Tayebi, L. (2018). Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceramics International, 44(1), 1220. https://doi.org/10.1016/j.ceramint.2017.10.068
  • Boumaza, M., Khan, R., & Zahrani, S. (2016). RETRACTED: An experimental investigation of the effects of nanoparticles on the mechanical properties of epoxy coating. Thin Solid films, 620, 160. https://doi.org/10.1016/j.tsf.2016.09.035
  • Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., & Ghasemi, I. (2014). Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71(2), 337. https://doi.org/10.1007/s00289-013-1064-3
  • Chang, C.-M., & Liu, Y.-L. (2010). Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon N. Y, 48(4), 1289. https://doi.org/10.1016/j.carbon.2009.12.002
  • Charitos, I., Georgousis, G., Klonos, P. A., Kyritsis, A., Mouzakis, D., Raptis, Y., Kontos, A., & Kontou, E. (2021). The synergistic effect on the thermomechanical and electrical properties of carbonaceous hybrid polymer nanocomposites. Polymer Testing, 95, 107102. https://doi.org/10.1016/j.polymertesting.2021.107102
  • Chen, H., Ginzburg, V. V., Yang, J., Yang, Y., Liu, W., Huang, Y., Du, L., & Chen, B. (2016). Progress in Polymer Science, 59, 41.
  • Chen, J., Wang, G.-T., Yu, -Z.-Z., Huang, Z., & Mai, Y.-W. (2010). Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 70(5), 861. https://doi.org/10.1016/j.compscitech.2010.02.004
  • Chen, J., Wei, H., Bao, H., Jiang, P., & Huang, X. (2019). Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping bn nanosheets for thermal management applications. ACS Applied Materials & Interfaces, 11(34), 31402. https://doi.org/10.1021/acsami.9b10810
  • Chen, J., Yu, Y., Chen, J., Li, H., Ji, J., & Liu, D. (2015). Chemical modification of palygorskite with maleic anhydride modified polypropylene: Mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites. Applied Clay Science, 115, 230. https://doi.org/10.1016/j.clay.2015.07.012
  • Chen, Q., Zhang, L., Rahman, A., Zhou, Z., Wu, X.-F., & Fong, H. (2011). Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Composite in Part A Applied Scientific Manufactures, 42, 2036. https://doi.org/10.1016/j.compositesa.2011.09.010
  • Chen, R., Maclaughlin, S., Botton, G., & Zhu, S. (2009). Preparation of Ni-g-polymer core–shell nanoparticles by surface-initiated atom transfer radical polymerization. Polymer (Guildf), 50(18), 4293. https://doi.org/10.1016/j.polymer.2009.07.012
  • Choi, J., Shin, H., Yang, S., & Cho, M. (2015). The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach. Composite Structures, 119, 365. https://doi.org/10.1016/j.compstruct.2014.09.014
  • Choudhary, S., & Sengwa, R. J. (2011). Dielectric spectroscopy and confirmation of ion conduction mechanism in direct melt compounded hot-press polymer nanocomposite electrolytes. Ionics (Kiel), 17(9), 811. https://doi.org/10.1007/s11581-011-0585–8
  • Ciprari, D., Jacob, K., & Tannenbaum, R. (2006). Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules, 39(19), 6565. https://doi.org/10.1021/ma0602270
  • Crosby, A. J., & Lee, J.-Y. (2007). Polymer nanocomposites: the “nano” effect on mechanical properties. Polymer Reviews, 47(2), 217. https://doi.org/10.1080/15583720701271278
  • Dasari, A., Yu, -Z.-Z., & Mai, Y.-W. (2016). Polymer nanocomposites (pp. 35). Springer.
  • de Oliveira, P. W., Becker-Willinger, C., & Jilavi, M. H. (2010). Sol-Gel derived nanocomposites for optical applications. Advanced Engineering Materials, 12(5), 349. https://doi.org/10.1002/adem.201000116
  • Doniavi, A., Babazadeh, S., Azdast, T., & Hasanzadeh, R. (2016). An investigation on the mechanical properties of friction stir welded polycarbonate/aluminium oxide nanocomposite sheets. Journal of Elastomers & Plastics, 49(6), 498. https://doi.org/10.1177/0095244316674352
  • Dufresne, A. (2018). Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2112), 20170040. https://doi.org/10.1098/rsta.2017.0040
  • Fan, L.-W., Zhu, Z.-Q., Zeng, Y., Xiao, Y.-Q., Liu, X.-L., Wu, -Y.-Y., Ding, Q., Yu, Z.-T., & Cen, K.-F. (2015). Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Applied Thermal Engineering, 75, 532. https://doi.org/10.1016/j.applthermaleng.2014.10.050
  • Fernandes, N. J., Koerner, H., Giannelis, E. P., & Vaia, R. A. (2013). Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: Opportunities and challenges. MRS Communications, 3(1), 13. https://doi.org/10.1557/mrc.2013.9
  • Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2. https://doi.org/10.1016/j.nanoms.2019.02.006
  • Gam, S., Meth, J. S., Zane, S. G., Chi, C., Wood, B. A., Winey, K. I., Clarke, N., & Composto, R. J. (2012). Polymer diffusion in a polymer nanocomposite: Effect of nanoparticle size and polydispersity. Soft Matter, 8(24), 6512. https://doi.org/10.1039/c2sm25269d
  • Ghaleb, Z. A., Mariatti, M., & Ariff, Z. M. (2014). Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: The effect of sonication time and filler loading. Composite in Part A Applied Scientific Manufactures, 58, 77. https://doi.org/10.1016/j.compositesa.2013.12.002
  • Goda, H. (2018). In Nanoparticle technology handbook (pp. 695). Elsevier.
  • Grady, B. P. (2011). Carbon nanotube-polymer composites: Manufacture, properties, and applications. John Wiley & Sons.
  • Gu, H., Ma, C., Gu, J., Guo, J., Yan, X., Huang, J., Zhang, Q., & Guo, Z. (2016). An overview of multifunctional epoxy nanocomposites. Journal of Materials Chemistry C, 4(25), 5890. https://doi.org/10.1039/C6TC01210H
  • Gulotty, R., Castellino, M., Jagdale, P., Tagliaferro, A., & Balandin, A. A. (2013). Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano, 7(6), 5114. https://doi.org/10.1021/nn400726g
  • Guo, Z., Liang, X., Pereira, T., Scaffaro, R., & Hahn, H. T. (2007). CuO nanoparticle filled vinyl-ester resin nanocomposites: Fabrication, characterization and property analysis. Composites Science and Technology, 67(10), 2036. https://doi.org/10.1016/j.compscitech.2006.11.017
  • Guo, Z., Shin, K., Karki, A. B., Young, D. P., Kaner, R. B., & Hahn, H. T. (2009). Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research, 11(6), 1441. https://doi.org/10.1007/s11051-008-9531-8
  • Haeri, S. Z., Ramezanzadeh, B., & Asghari, M. (2017). A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. Journal of Colloid and Interface Science, 493, 111. https://doi.org/10.1016/j.jcis.2017.01.016
  • Holt, A. P., Griffin, P. J., Bocharova, V., Agapov, A. L., Imel, A. E., Dadmun, M. D., Sangoro, J. R., & Sokolov, A. P. (2014). Dynamics at the polymer/nanoparticle interface in poly(2-vinylpyridine)/silica nanocomposites. Macromolecules, 47(5), 1837. https://doi.org/10.1021/ma5000317
  • Huang, T.-C., Yeh, J.-M., & Lai, C.-Y. (2012). Advances in polymer nanocomposites (pp. 605). Elsevier.
  • Huang, X., & Jiang, P. (2015). Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications . Advanced Materials, 27(3), 546. https://doi.org/10.1002/adma.201401310
  • Hussain, T., Ahmad, M. N., Nawaz, A., Mujahid, A., Bashir, F., & Mustafa, G. (2017). Surfactant incorporated Co nanoparticles polymer composites with uniform dispersion and double percolation. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/7191590
  • Jia, Z.-R., Gao, Z.-G., Lan, D., Cheng, Y.-H., Wu, G.-L., & Wu, H.-J. (2018). Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chinese Physics B, 27(11), 117806. https://doi.org/10.1088/1674-1056/27/11/117806
  • Jiang, C., Jin, C., Wei, M., Yan, S., & Chen, D. (2018). Mechanical and thermal properties improvement of unsaturated polyester resin by incorporation of TiO2 nanoparticle surface modified with titanate. Materials Research Express, 5(11), 115008. https://doi.org/10.1088/2053-1591/aadc42
  • Jiang, S.-D., Bai, Z.-M., Tang, G., Hu, Y., & Song, L. (2014). Fabrication and characterization of graphene oxide-reinforced poly(vinyl alcohol)-based hybrid composites by the sol–gel method. Composites Science and Technology, 102(2014), 51. https://doi.org/10.1016/j.compscitech.2014.06.029
  • Kalia, S., Kango, S., Kumar, A., Haldorai, Y., Kumari, B., & Kumar, R. (2014). Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid in Polymer Science, 292, 2025. https://doi.org/10.1007/s00396-014-3357-y
  • Kang, W.-S., Rhee, K. Y., & Park, S.-J. (2017). Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites. Composites Part B: Engineering, 114, 175. https://doi.org/10.1016/j.compositesb.2017.01.032
  • Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38, 1232. https://doi.org/10.1016/j.progpolymsci.2013.02.003
  • Khan, M. U., Reddy, K. R., Snguanwongchai, T., Haque, E., & Gomes, V. G. (2016). Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid and Polymer Science, 294(10), 1599. https://doi.org/10.1007/s00396-016-3922-7
  • Khan, W., Sharma, R., & Saini, P. (2016). Carbon Nanotub. Prog. their Polym. Compos. https://doi.org/10.5772/62497
  • Khoshkava, V., & Kamal, M. R. (2013). Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites. Biomacromolecules, 14(9), 3155. https://doi.org/10.1021/bm400784j
  • Kredatusová, J., & Brožek, J. (2012). Preparation of clay mineral polymer nanocomposites by adsorption in solution. Applied Clay Science, 62, 94. https://doi.org/10.1016/j.clay.2012.04.009
  • Krishnaiah, P., Ratnam, C. T., & Manickam, S. (2017). Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Applied Clay Science, 135, 583. https://doi.org/10.1016/j.clay.2016.10.046
  • Kumar, A., Ghosh, P. K., Yadav, K. L., & Kumar, K. (2017). Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Composites Part B: Engineering, 113, 291. https://doi.org/10.1016/j.compositesb.2017.01.046
  • Kumar, S. K., Ganesan, V., & Riggleman, R. A. (2017). Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. The Journal of Chemical Physics, 147(2), 20901. https://doi.org/10.1063/1.4990501
  • Kutvonen, A., Rossi, G., Puisto, S. R., Rostedt, N. K. J., & Ala-Nissila, T. (2012). Influence of nanoparticle size, loading, and shape on the mechanical properties of polymer nanocomposites. The Journal of Chemical Physics, 137(21), 214901. https://doi.org/10.1063/1.4767517
  • Ladani, R. B., Bhasin, M., Wu, S., Ravindran, A. R., Ghorbani, K., Zhang, J., Kinloch, A. J., Mouritz, A. P., & Wang, C. H. (2018). Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillers. Engineering Fracture Mechanics, 203, 102. https://doi.org/10.1016/j.engfracmech.2018.04.033
  • Lee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., & Ramakrishna, S. (2018). Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 86, 40. https://doi.org/10.1016/j.progpolymsci.2018.07.002
  • Li, G., Yu, S., Sun, R., & Lu, D. (2015). Clean and in-situ synthesis of copper–epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance. Composites Science and Technology, 110, 95. https://doi.org/10.1016/j.compscitech.2014.12.010
  • Li, H., Zare, Y., & Rhee, K. Y. (2018). The percolation threshold for tensile strength of polymer/CNT nanocomposites assuming filler network and interphase regions. Materials Chemistry and Physics, 207, 76. https://doi.org/10.1016/j.matchemphys.2017.12.053
  • Li, Y., Kröger, M., & Liu, W. K. (2012). Nanoparticle Geometrical Effect on Structure, Dynamics and Anisotropic Viscosity of Polyethylene Nanocomposites. Macromolecules, 45(4), 2099. https://doi.org/10.1021/ma202289a
  • Li, Y., Zhang, H., Porwal, H., Huang, Z., Bilotti, E., & Peijs, T. (2017). Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites. Composite in Part A Applied Scientific Manufactures, 95, 229. https://doi.org/10.1016/j.compositesa.2017.01.007
  • Liang, C., song, P., Gu, H., Ma, C., Guo, Y., Zhang, H., Xu, X., Zhang, Q., & Gu, J. (2017). Nanopolydopamine coupled fluorescent nanozinc oxide reinforced epoxy nanocomposites. Composite in Part A Applied Scientific Manufactures, 102, 126. https://doi.org/10.1016/j.compositesa.2017.07.030
  • Lin, -C.-C., Ohno, K., Clarke, N., Winey, K. I., & Composto, R. J. (2014). Macromolecular Diffusion through a Polymer Matrix with Polymer-Grafted Chained Nanoparticles. Macromolecules, 47(15), 5357. https://doi.org/10.1021/ma501113c
  • Lin, Z., Mcnamara, A., Liu, Y., Moon, K., & Wong, C.-P. (2014). Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Composites Science and Technology, 90, 123. https://doi.org/10.1016/j.compscitech.2013.10.018
  • Ma, L., Wang, G., & Dai, J. (2017). Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Performance Polymers, 29(2), 187. https://doi.org/10.1177/0954008316634177
  • Machrafi, H., Lebon, G., & Iorio, C. S. (2016). Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Composites Science and Technology, 130, 78. https://doi.org/10.1016/j.compscitech.2016.05.003
  • Maghsoudlou, M. A., Isfahani, R. B., Saber-Samandari, S., & Sadighi, M. (2019). Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations. Composites Part B: Engineering, 175, 107119. https://doi.org/10.1016/j.compositesb.2019.107119
  • Mahmoudian, M., Poursattar Marjani, A., Hasanzadeh, R., Moradian, M., & Mamaghani Shishavan, S. (2020). Optimization of mechanical properties of in situ polymerized poly(methyl methacrylate)/alumina nanoparticles nanocomposites using Taguchi approach. Polymer Bulletin, 77(6), 2837. https://doi.org/10.1007/s00289-019-02885-x
  • Mallakpour, S., & Madani, M. (2015). A review of current coupling agents for modification of metal oxide nanoparticles. Progress in Organic Coatings, 86, 194. https://doi.org/10.1016/j.porgcoat.2015.05.023
  • Martone, A., Formicola, C., Giordano, M., & Zarrelli, M. (2010). Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Composites Science and Technology, 70(7), 1154. https://doi.org/10.1016/j.compscitech.2010.03.001
  • Mehrizi, M. Z., Beygi, R., & Eisaabadi, G. (2016). Synthesis of Al/TiC–Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment. Ceramics International, 42(7), 8895. https://doi.org/10.1016/j.ceramint.2016.02.144
  • Mittal, V. (2009). Polymer Layered Silicate Nanocomposites: A Review. Materials (Basel), 2(3), 992. https://doi.org/10.3390/ma2030992
  • Mokhireva, K. A., Svistkov, A. L., Solod’ko, V. N., Komar, L. A., & Stöckelhuber, K. W. (2017). Experimental analysis of the effect of carbon nanoparticles with different geometry on the appearance of anisotropy of mechanical properties in elastomeric composites. Polymer Testing, 59, 46. https://doi.org/10.1016/j.polymertesting.2017.01.007
  • Morsi, R. E., Labena, A., & Khamis, E. A. (2016). Core/shell (ZnO/polyacrylamide) nanocomposite: In-situ emulsion polymerization, corrosion inhibition, anti-microbial and anti-biofilm characteristics. Journal of the Taiwan Institute of Chemical Engineers, 63, 512. https://doi.org/10.1016/j.jtice.2016.03.037
  • Msekh, M. A., Cuong, N. H., Zi, G., Areias, P., Zhuang, X., & Rabczuk, T. (2018). Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Engineering Fracture Mechanics, 188, 287. https://doi.org/10.1016/j.engfracmech.2017.08.002
  • Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Pérez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castelló, S., & Schmid, M. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7(4), 74. https://doi.org/10.3390/nano7040074
  • Naderi-Samani, H., Razavi, R. S., Loghman-Estarki, M. R., & Ramazani, M. (2017). The effects of organoclay on the morphology and mechanical properties of PAI/clay nanocomposites coatings prepared by the ultrasonication assisted process. Ultrasonics Sonochemistry, 38, 306. https://doi.org/10.1016/j.ultsonch.2017.03.009
  • Naito, M., Yokoyama, T., Hosokawa, K., & Nogi, K. (2018). Nanoparticle technology handbook. Elsevier.
  • Naskar, A. K., Keum, J. K., & Boeman, R. G. (2016). Polymer matrix nanocomposites for automotive structural components. Nature Nanotechnology, 11(12), 1026. https://doi.org/10.1038/nnano.2016.262
  • Nayak, R. K., & Ray, B. C. (2018). Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites. Archives of Civil and Mechanical Engineering, 18(4), 1597. https://doi.org/10.1016/j.acme.2018.07.002
  • Naz, A., Kausar, A., Siddiq, M., & Choudhary, M. A. (2016). Comparative Review on Structure, Properties, Fabrication Techniques, and Relevance of Polymer Nanocomposites Reinforced with Carbon Nanotube and Graphite Fillers. Polymer-Plastics Technology and Engineering, 55(2), 171. https://doi.org/10.1080/03602559.2015.1055504
  • Nejad, S. A., Majzoobi, G. H., & Sabet, S. A. R. (2019). Role of sonication time on mechanical properties of graphene oxide/epoxy nanocomposites under quasi-static loading conditions. Iranian Polymer Journal, 28(10), 895. https://doi.org/10.1007/s13726-019-00752-0
  • Njuguna, J., Pielichowski, K., & In, F. J. (2012). Advances in Polymer Nanocomposites (pp. 472). Elsevier.
  • Oh, W.-C., Ko, W.-B., & Zhang, F.-J. (2010). The functionalization and preparation methods of carbon nanotube-polymer composites: A review. Elastomers Compos, 45, 80.
  • Pak, S. Y., Kim, H. M., Kim, S. Y., & Youn, J. R. (2012). Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon N. Y, 50(13), 4830. https://doi.org/10.1016/j.carbon.2012.06.009
  • Panchagnula, K. K., & Kuppan, P. (2019). Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs. Journal of Materials Research and Technology, 8(1), 366. https://doi.org/10.1016/j.jmrt.2018.02.009
  • Pandey, D., Reifenberger, R., & Piner, R. (2008). Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surface Science, 602(9), 1607. https://doi.org/10.1016/j.susc.2008.02.025
  • Pandey, S., & Mishra, S. B. (2011). Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. Journal of Sol-Gel Science and Technology, 59, 73. https://doi.org/10.1007/s10971-011-2465-0
  • Papageorgiou, G. Z., Terzopoulou, Z., Bikiaris, D., Triantafyllidis, K. S., Diamanti, E., Gournis, D., Klonos, P., Giannoulidis, E., & Pissis, P. (2014). Evaluation of the formed interface in biodegradable poly(l-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochimica Acta, 597, 48. https://doi.org/10.1016/j.tca.2014.10.007
  • Parameswaranpillai, J., George, A., Pionteck, J., & Thomas, S. (2013). J. Polym, 2013, 183463. https://doi.org/10.1155/2013/183463
  • Park, C., Jung, J., & Yun, G. J. (2019). Thermomechanical properties of mineralized nitrogen-doped carbon nanotube/polymer nanocomposites by molecular dynamics simulations. Composites Part B: Engineering, 161, 639. https://doi.org/10.1016/j.compositesb.2019.01.002
  • Pokharel, P., & Lee, D. S. (2014). High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chemical Engineering Journal, 253, 356. https://doi.org/10.1016/j.cej.2014.05.046
  • Pour, Z. S., & Ghaemy, M. (2014). Thermo-mechanical behaviors of epoxy resins reinforced with silane-epoxide functionalized α-Fe2O3 nanoparticles. Progress in Organic Coatings, 77(8), 1316. https://doi.org/10.1016/j.porgcoat.2014.04.001
  • Prevot, V., & Tokudome, Y. (2017). 3D hierarchical and porous layered double hydroxide structures: An overview of synthesis methods and applications. Journal of Materials Science, 52(19), 11229. https://doi.org/10.1007/s10853-017-1067-9
  • Rahman, I. A., & Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—A review. J. Nanomater, 2012, 1. https://doi.org/10.1155/2012/132424
  • Ramezanzadeh, B., Attar, M. M., & Farzam, M. (2011). Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. Journal of Thermal Analysis and Calorimetry, 103, 731. https://doi.org/10.1007/s10973-010-0996-1.
  • Razavi, R., Zare, Y., & Rhee, K. Y. (2018). A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions. Colloids Surfaces A Physicochemical Engineering, Asp, 538, 148. https://doi.org/10.1016/j.colsurfa.2017.10.063
  • Ren, L., Pashayi, K., Fard, H. R., Kotha, S. P., Borca-Tasciuc, T., & Ozisik, R. (2014). Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Composites Part B: Engineering, 58, 228. https://doi.org/10.1016/j.compositesb.2013.10.049
  • Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., & Varlet, J. (2001). Nanofillers in polymeric matrix: A study on silica reinforced PA6. Polymer (Guildf), 42(21), 8759. https://doi.org/10.1016/S0032-3861(01)00446-3
  • Riquelme, J., Garzón, C., Bergmann, C., Geshev, J., & Quijada, R. (2016). Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene. European Polymer Journal, 75, 200. https://doi.org/10.1016/j.eurpolymj.2015.12.007
  • Rong, M. Z., Zhang, M. Q., & Ruan, W. H. (2006). Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review. Materials Science and Technology, 22(7), 787. https://doi.org/10.1179/174328406X101247
  • Saba, N., Tahir, P. M., & Jawaid, M. (2014). A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel), 6(8), 2247. https://doi.org/10.3390/polym6082247
  • Salahuddin, N. A., El-Kemary, M., & Ibrahim, E. M. (2017). High-performance flexible epoxy/ZnO nanocomposites with enhanced mechanical and thermal properties. Polymer Engineering & Science, 57(9), 932. https://doi.org/10.1002/pen.24520
  • Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes. Materials & Design, 141, 333. https://doi.org/10.1016/j.matdes.2017.12.052
  • Schoonheydt, R. A., Johnston, C. T., & In, B. F. (2018). Surface and interface chemistry of clay minerals. Developments in Clay Science; Elsevier. 9, 1. https://doi.org/10.1016/B978–0–08–102432–4.00001–9
  • Senthil Kumar, M. S., Raju, M. S., Sampath, N., & Chithirai Pon, P. S. (2018). Influence of nanoclay on mechanical and thermal properties of glass fiber reinforced polymer nanocomposites. Polymer Composites, 39(6), 1861. https://doi.org/10.1002/pc.24139
  • Shanshool, H. M., Yahaya, M., Yunus, W. M. M., & Abdullah, I. Y. (2016). Investigation of energy band gap in polymer/ZnO nanocomposites. Journal of Materials Science: Materials in Electronics, 27(9), 9804. https://doi.org/10.1007/s10854-016-5046-8
  • Sharifzadeh, E., & Cheraghi, K. (2021). Temperature-affected mechanical properties of polymer nanocomposites from glassy-state to glass transition temperature. Mechanics of Materials, 160, 103990. https://doi.org/10.1016/j.mechmat.2021.103990
  • Sharifzadeh, E., Ghasemi, I., Karrabi, M., & Azizi, H. (2014). A new approach in modeling of mechanical properties of nanocomposites: Effect of interface region and random orientation. Iranian Polymer Journal, 23(11), 835. https://doi.org/10.1007/s13726-014-0276-1
  • Sharifzadeh, E., Tohfegar, E., & Safajou Jahankhanemlou, M. (2020). The influences of the nanoparticles related parameters on the tensile strength of polymer nanocomposites. Iranian. Journal of Chemical Engineering, 17(1), 65. https://dx.doi.org/10.22034/ijche.2020.234505.1337
  • Shen, W., Zhang, T., Ge, Y., Feng, L., Feng, H., & Li, P. (2021). Multifunctional AgO/epoxy nanocomposites with enhanced mechanical, anticorrosion and bactericidal properties. Progress in Organic Coatings, 152, 106130. https://doi.org/10.1016/j.porgcoat.2020.106130
  • Shin, H., Yang, S., Choi, J., Chang, S., & Cho, M. (2015). Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: A multiscale approach. Chemical Physics Letters, 635, 80. https://doi.org/10.1016/j.cplett.2015.06.054
  • Suresh, S., Nisha, P., Saravanan, P., Jayamoorthy, K., & Karthikeyan, S. (2018). Investigation of the thermal and dielectric behavior of epoxy nano-hybrids by using silane modified nano-ZnO. Silicon, 10(4), 1291. https://doi.org/10.1007/s12633-017-9604-3
  • Tamayo, L., Azócar, M., Kogan, M., Riveros, A., & Páez, M. (2016). Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Materials in Science Engineering C, 69, 1391. https://doi.org/10.1016/j.msec.2016.08.041
  • Tang, C., Hackenberg, K., Fu, Q., Ajayan, P. M., & Ardebili, H. (2012). High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Letters, 12(3), 1152. https://doi.org/10.1021/nl202692y
  • Tessema, A., Zhao, D., Moll, J., Xu, S., Yang, R., Li, C., Kumar, S. K., & Kidane, A. (2017). Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polymer Testing, 57, 101. https://doi.org/10.1016/j.polymertesting.2016.11.015
  • Thipperudrappa, S., Kini, A. U., & Hiremath, A. (2019). An experimental study to evaluate the effect of TiO 2 nanoparticles on the strength and stability of unidirectional glass fiber reinforced epoxy composites. Materials Research Express, 6(11), 115347. https://doi.org/10.1088/2053-1591/ab5031
  • Thipperudrappa, S., Ullal Kini, A., & Hiremath, A. (2020). Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites. Polym Compos, 41(1), 174. https://doi.org/10.1002/pc.25357.
  • Thomassin, J.-M., Jerome, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74(7), 211. https://doi.org/10.1016/j.mser.2013.06.001
  • Tien, P., Lin, C. H., Wang, C.-Y., & Sura, R. K. (2014). Thermal grease having low thermal resistance. U.S. Patent Application No. 14/348,959.
  • Tomić, M. D., Dunjić, B., Bajat, J. B., Likić, V., Rogan, J., & Djonlagić, J. (2016). Anticorrosive epoxy/clay nanocomposite coatings: Rheological and protective properties. Journal of Coatings Technology and Research, 13(3), 439. https://doi.org/10.1007/s11998-015-9762-4
  • Tong, Y., Zhang, L., Bass, P., Rolin, T. D., & Cheng, Z.-Y. (2018). Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE) composites. Journal of Advanced Dielectrics, 8(2), 1850008. https://doi.org/10.1142/S2010135X1850008X
  • Uddin, F. (2008). Clays, nanoclays, and montmorillonite minerals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 39(12), 2804. https://doi.org/10.1007/s11661-008-9603-5
  • Ullah, M., Ali, M., & Hamid, S. B. A. (2014). Reviews on Advanced Materials Science, 37(2014), 1. https://www.ipme.ru/e-journals/RAMS/no_13714/01_13714_ali.pdf
  • Ürk, D., Demir, E., Bulut, O., Çakıroğlu, D., Cebeci, F. Ç., Lütfi Öveçoğlu, M., & Cebeci, H. (2016). Understanding the polymer type and CNT orientation effect on the dynamic mechanical properties of high volume fraction CNT polymer nanocomposites. Composite Structures, 155, 255. https://doi.org/10.1016/j.compstruct.2016.05.087
  • Vengatesan, M. R., & Mittal, V. (2016). Spherical Fibrous Fill. In Compos (pp. 1). Wiley-VCH.
  • Wang, J., Li, Q., Liu, D., Chen, C., Chen, Z., Hao, J., Li, Y., Zhang, J., Naebe, M., & Lei, W. (2018). High temperature thermally conductive nanocomposite textile by “green” electrospinning. Nanoscale, 10(35), 16868. https://doi.org/10.1039/C8NR05167D
  • Wang, R., Schuman, T., Vuppalapati, R. R., & Chandrashekhara, K. (2014). Fabrication of bio-based epoxy–clay nanocomposites. Green Chemical Engineering, 16(4), 1871. https://doi.org/10.1039/C3GC41802B
  • Weber, B. (2017). Synthesis of coordination polymer nanoparticles using self-assembled block copolymers as template. Chemistry - A European Journal, 23(72), 18093. https://doi.org/10.1002/chem.201703280
  • Wong, T., Lau, K., Tam, W., Etches, J. A., Kim, J.-K., & Wu, Y. (2016). Effects of silane surfactant on Nano-ZnO and rheology properties of nano-ZnO/epoxy on the UV absorbability of nano-ZnO/epoxy/micron-HGF composite. Composites Part B: Engineering, 90, 378. https://doi.org/10.1016/j.compositesb.2016.01.005
  • Wong, T., Lau, K., Tam, W., Leng, J., & Etches, J. A. (2014). UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite. Materials & Design (1980-2015), 56, 254. https://doi.org/10.1016/j.matdes.2013.11.014
  • Xie, B., Zhu, Y., Marwat, M. A., Zhang, S., Zhang, L., & Zhang, H. (2018). Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. Journal of Materials Chemistry A, 6(41), 20356. https://doi.org/10.1039/C8TA07364C
  • Xu, T., Liao, M.-T., & Han, W. (2016). Polyacrylamide/metakaolinite nanocomposites by in-situ intercalative polymerization. Particulate Science and Technology, 34(5), 602. https://doi.org/10.1080/02726351.2015.1096873
  • Yao, H., Hawkins, S. A., & Sue, H.-J. (2017). Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Composites Science and Technology, 146, 161. https://doi.org/10.1016/j.compscitech.2017.04.026
  • Yazman, Ş., & Samancı, A. (2019). A comparative study on the effect of CNT or alumina nanoparticles on the tensile properties of epoxy nanocomposites. Arabian Journal for Science and Engineering, 44(2), 1353. https://doi.org/10.1007/s13369-018-3516-4
  • Yu, J., Huang, X., Wu, C., Wu, X., Wang, G., & Jiang, P. (2012). Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer (Guildf), 53(2), 471. https://doi.org/10.1016/j.polymer.2011.12.040
  • Zare, Y. (2016). Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composite in Part A Applied Scientific Manufactures, 84, 158. https://doi.org/10.1016/j.compositesa.2016.01.020
  • Zare, Y., & Garmabi, H. (2015). Thickness, modulus and strength of interphase in clay/polymer nanocomposites. Applied Clay Science, 105, 66. https://doi.org/10.1016/j.clay.2014.12.016
  • Zhang, G., Wu, T., Lin, W., Tan, Y., Chen, R., Huang, Z., Yin, X., & Qu, J. (2017). Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Composites Science and Technology, 145, 157. https://doi.org/10.1016/j.compscitech.2017.04.005
  • Zhang, H., Wang, L., Chen, Q., Li, P., Zhou, A., Cao, X., & Hu, Q. (2016). Preparation, mechanical and anti-friction performance of MXene/polymer composites. Materials & Design, 92, 682. https://doi.org/10.1016/j.matdes.2015.12.084
  • Zhou, K., Gao, R., Gui, Z., & Hu, Y. (2017). The effective reinforcements of functionalized MoS 2 nanosheets in polymer hybrid composites by sol-gel technique. Composite in Part A Applied Scientific Manufactures, 94, 1. https://doi.org/10.1016/j.compositesa.2016.12.010