4,270
Views
2
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Strength behaviour of Corn Husk Ash polymer concrete reinforced with coconut fibre

ORCID Icon, & | (Reviewing editor)
Article: 1993511 | Received 04 Dec 2020, Accepted 11 Oct 2021, Published online: 28 Oct 2021

References

  • Ahenkora, K., Twumasi, A. S., Sallah, P. Y. K., & Obeng-Antwi, K. (1999). Protein nutritional quality and consumer acceptability of tropical Ghanaian quality protein maize. Food and Nutrition Bulletin, 20(3), 354–16. https://doi.org/10.1177/156482659902000313
  • Al-Oraimi, S. K., & Seibi, A. C. (1995). Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Composite Structures, 32(1–4), 165–171. https://doi.org/10.1016/0263-8223(95)00043-7
  • BS EN 1008. (2002). Mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. British Standard Institution.
  • BS EN 12390-3. (2019). Testing hardened concrete. Compressive strength of test specimens. British Standard Institution.
  • BS EN 12390-6. (2009). Testing hardened concrete. Tensile splitting strength of test specimens. British Standard Institution.
  • BS EN 12620. (2002). Aggregates for concrete. British Standard Institution.
  • BS EN 197-1. (2011). Cement. Composition, specifications and conformity criteria for common cements. British Standard Institution.
  • BS EN 206. (2013). Concrete. Specification, performance, production and conformity. British Standard Institution.
  • BS EN 450-1. (2012). Fly ash for concrete. Definition, specifications and conformity criteria. British Standard Institution.
  • CoDyre, L., Mak, K., & Fam, A. (2018). Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities. Journal of Sandwich Structures and Materials, 20(5), 595–616. https://doi.org/10.1177/1099636216667658
  • Dembovska, L., Bajare, D., Pundiene, I., & Vitola, L. (2017). Effect of pozzolanic additives on the strength development of high performance concrete. Procedia Engineering, 172(2017), 202–210. https://doi.org/10.1016/j.proeng.2017.02.050
  • Gutierrezi, R. M., Diaz, N., & Delyasto, S. (2005). Effect of pozzolans on the performance of fiber-reinforced mortars. Cement and Concrete Composites, 27(5), 593–598. https://doi.org/10.1016/j.cemconcomp.2004.09.010
  • Halm, M., Amoa-Awua, W. K., & Jakobsen, M. (2004). Kenkey: An African fermented Maize product. In Y. H. Hui, L. Meunier-Goddik, J. Josephsen, W. Nip, P. S. Stanfield, & F. Toldra (Eds.), Handbook of food and beverage fermentation technology (pp. 719–816). Marcel Dekker Incorporated.
  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30(2012), 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045
  • Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review of the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010
  • Momoh, E. O., & Osofero, A. I. (2020). Recent developments in the application of oil palm fibers in cement composites. Frontiers of Structural and Civil Engineering, 14(1), 94–108. https://doi.org/10.1007/s11709-019-0576-9
  • Nanayakkaza, N. H., Ismail, M. G. M. U., & Wijesundara, R. L. C. (2005). Characterisation and determination of properties of Sri Lanka coconut. Journal of Natural Fibres, 2(1), 69–81. https://doi.org/10.1300/J395v02n01_06
  • Ramakrishna, G., & Sundara, T. (2005). Study into the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composite, 27(5), 575–582. https://doi.org/10.1016/j.cemconcomp.2004.09.008
  • Romildo, D., Toledo, F., Karen, S., England, G. L., & Ghavami, K. (2000). Durability of alkali-sensitive sisal and coconut fibres in cement mortar composite. Cement and Concrete Composite, 22(2), 127–143. https://doi.org/10.1016/S0958-9465(99)00039-6
  • Yalley, P. P., & Kwan, A. S. K. (2009). Use of coconut fibre as an enhancement of concrete. Journal of Engineering and Technology, 3, 54–73. https://orca.cardiff.ac.uk/43403/1/Yalley%20Kwan%20KNUST%20paper%20.%201.pdf
  • Yalley, P. P. K., & Asiedu, E. (2013). Enhancing the properties of soil bricks by stabilizing with Corn Husk Ash. Civil and Environmental Research, 3(11), 43–52. https://www.iiste.org/Journals/index.php/CER/article/view/8116
  • Zhang, P., & Li, Q. (2013). Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites Part B: Engineering, 45(1), 1587–1594. https://doi.org/10.1016/j.compositesb.2012.10.006
  • Zhou, H., Jia, B., Huang, H., & Mou, Y. (2020). Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials, 13(6), 1362. https://doi.org/10.3390/ma13061362