917
Views
2
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Natural pozzolana of micro and nano-size as cementitious additive: resistance of concrete/mortar to chloride and acid attack

ORCID Icon | (Reviewing editor)
Article: 1996306 | Received 30 Dec 2020, Accepted 18 Oct 2021, Published online: 03 Dec 2021

References

  • Al-swaidani, A. M. (2016). Prediction of compressive strength and some permeability related properties of concretes containing volcanic scoria as cement replacement. Romanian Journal of Materials, 46(4), 505–23. https://solacolu.chim.upb.ro/p505-514.pdf
  • Al-swaidani, A. M. (2019). Use of micro and nano volcanic scoria in the concrete binder: study of compressive strength, porosity and sulfate resistance. Case Studies in Construction Materials, 11(December 2019), e00294. https://doi.org/10.1016/j.cscm.2019.e00294
  • Al-swaidani, A. M., & Aliyan, S. D. (2015). Effect of adding scoria as cement replacement on durability-related properties. International Journal of Concrete Structures and Materials, 9, 241–254. https://doi.org/10.1007/s40069-015-0101-z
  • Al-Zboon, K., & Al-Zou’by, J. (2016). Effect of volcanic tuff on the characteristics of cement mortar. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2015.1053151
  • -Askkarinejad, A., Pourkhorshidi, A., & Parhizkar, T. (2012). Evaluation the pozzolanic reactivity sonochemically fabricated nano natural pozzolan. Ultrasonics Sonochemistry, 19(1), 119–124. https://doi.org/10.1016/j.ultsonch.2011.05.005
  • Askkarinejad, A., Zisti, F., Pourkhorshidi, A., & Parhizkar, T. (2016). Hydrothermal preparation of natural pozzolan nanostructures as a new route to activate cement replacement materials. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46(8), 1157-1162. https://doi.org/10.1080/15533174.2013.776595
  • Balapour, M., Joshaghani, A., & Althoey, F. (2018). Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review. Construction and Building Materials, 181(August 2018), 27–41. https://doi.org/10.1016/j.conbuildmat.2018.05.266
  • Birnin-Yauri, U. A., & Glasser, F. P. (1998). Friedel’s salt, Ca2Al(OH)6(Cl,OH)z2H2O: its solid solutions and their role in chloride binding. Cement and Concrete Research, 28(12), 1713–1723. https://doi.org/10.1016/S0008-8846(98)00162-8
  • Du, H., Du, S., & Liu, X. (2014). Durability performances of concrete with nano-silica. Construction and Building Materials, 73,(30 December 2014), 705–712. https://doi.org/10.1016/j.conbuildmat.2014.10.014
  • El-Feky, M. S., Serag, M. I., Yasien, A. M., & Elkady, H. (2016). Bond strength oF nano silica concrete subjected to corrosive environments. ARPN Journal of Engineering and Applied Sciences, 11(23), 13909–13924. http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_1216_5472.pdf
  • GEMGR. (2011). ““The General Establishment of Geology and Mineral Resources” in Syria (inArabic),” AGuide forMineral Resources in Syria.
  • Ghrici, M., Kenai, S., & Meziane, E. (2006). Mechanical and durability properties of cement mortar with Algerian natural pozzolana. Journal of Material Science, 41(21), 6965–6972. https://doi.org/10.1007/s10853-006-0227-0
  • Gopalakrishnan, R., & Jeyalakshmi, R. (2020). The effects on durability and mechanical properties of multiple nano and micro additive OPC mortar exposed to combined chloride and sulfate attack. Materials Science in Semiconductor Processing, 106(February 2020), 104772. https://doi.org/10.1016/j.mssp.2019.104772
  • Guneyisi, E., Ozturan, T., & Gesoglu, M., & Guneyisi. (2005). A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions. Cement & Concrete Composites, 27(2005), 449–461. https://doi.org/10.1016/j.cemconcomp.2004.05.006
  • Gutberlet, T., Hilbig, H., & Beddoe, R. E. (2015). Effect of mineral acids on the degradation process. Cement and Concrete Research, 74(August 2015), 35–43. https://doi.org/10.1016/j.cemconres.2015.03.011
  • He, X., & Shi, X. (2008). Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials, transportation research record. Journal of the Transportation Research Board 2070(1), 13–21. https://doi.org/10.3141/2070-03
  • Horsakulthai, V., Phiuvanna, S., & Kaenbud, W. (2011). Investigation on the corrosion resistance of bagasse-rice husk-wood ash blended cement concrete by impressed voltage. Construction and Building Materials, 25(1), 54–60. https://doi.org/10.1016/j.conbuildmat.2010.06.057
  • Israel, D., Macphee, D., & Lachowski, E. (1997). Acid attack on pore-reduced cements. J. Mater. Sci, 32(15), 4109–4116. https://doi.org/10.1023/A:1018610109429
  • Jo, B. W., Kim, C. H., Tae, G., & Park, J. B. (2007). Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21(6), 1351–1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  • Kaid, N., Cyr, M., & Khelafi, H. (2015). Characterization of an Algeria natural pozzolan for its use in eco-efficient cement. Int. J. Civ. Eng, 13(4A), 444–454. http://ijce.iust.ac.ir/article-1-974-en.html
  • Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: Microstructure, properties and materials (3ed). McGraw-Hill.
  • Montgomery, D. C., & Peck, E. A. (1982). Introduction to linear regression analysis. Wiley.
  • Nasution, A., Imran, I., & Abdullah, M., & Saloma. (2015). Improvement of concrete durability by nanomaterials. Procedia Engineering, 125(2015), 608–612. https://doi.org/10.1016/j.proeng.2015.11.078
  • Neville, A. M. (2011). Properties of Concrete (fifth edition). Pearson Education, 2011.
  • Pavlík, V. (1994). Corrosion of hardened cement paste by acetic and nitric acids part I: Calculation of corrosion depth. Cem. Concr. Res, 24(3), 551–562. https://doi.org/10.1016/0008-8846(94)90144-9
  • Pourkhorshidi, A. R., Najimi, M., Parhizkar, T., Jafarpour, F., & Hillemeier, B. (2010). Applicability of the standard specification of ASTM C 618 for evaluation of natural pozzolans. Cement & Concrete Composites, 32(10), 794–800. https://doi.org/10.1016/j.cemconcomp.2010.08.007
  • Ramezanianpour, A., Mirvalad, S., Aramun, E., & Peidayesh, M. (2010). Effect of four Iranian natural pozzolans on concrete durability against chloride penetration and sulphate attack. In P. Claisse (Ed.), Proceedings of the 2nd international conference on sustainable construction materials and technology, 28-30 June, Ancona, Italy. http://www.claisse.info/2010%20papers/t37.pdf
  • Reddy, D. V., Edouard, J. B., Sobhan, K., & Rajpathak, S. S. (2011). Durability of reinforced fly ash-based geopolymer concrete in the marine environment. In Proceedings of the 36th conference on our world in concrete & structures, August 14–16, Singapore: CIPREMIER PTE LTD.
  • Said, A. M., Zeidan, M. S., Bassuoni, M. T., & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36(2012), 838–844. http://doi.org/10.1016/j.conbuildmat.2012.06.044
  • Senhadji, Y., Escadeillas, G., Khelafi, H., Mouli, M., & Benosman, A. S. (2012). Evaluation of natural pozzolan for use as supplementary cementitious material. European Journal of Environmental and Civil Engineering, 16(1), 77–96. https://doi.org/10.1080/19648189.2012.667692
  • Shao, Y., Zhou, M., Wang, W., & Hou, H. (2013). Identification of chromate binding mechanisms in friedel’s salt. Construction and Building Materials, 48(November 2013), 942–947. http://doi.org/10.1016/j.conbuildmat.2013.07.098
  • Shebl, S., Allie, L., Morsy, M., & Aglan, H. (2009). Mechanical behaviour of activated nano silicate filled cement binders. Journal of Materials Science, 44(6), 1600–1666. https://doi.org/10.1007/s10853-008-3214-9
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahlawat, S. (2013). Beneficial role of nano-silica in cement based materials- a review. Construction and Building Materials, 44(October 2013), 1069–1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F. (2017). Incorporation of nano-materials in cement composite and geopolymer based paste and mortar-A review. Construction and Building Materials, 148(September 2017), 62–84. https://doi.org/10.1016/j.conbuildmat.2017.04.206
  • Tchamdjou, W. H. J., Grigoletto, S., Michel, F., Courard, L., Cherradi, T., & Abidi, M. L. (2017). Effects of various amounts of natural pozzolans from volcanic scoria on performance of Portland ement mortars. Int. J. Eng. Res. Afr, 32(2017), 36–52. https://doi.org/10.4028/www.scientific.net/JERA.32.36
  • Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42(1), 1–7. https://doi.org/10.1016/j.cemconres.2011.01.001
  • Yang, Z., Gao, Y., Mu, S., Chang, H., Sun, W., & Jiang, J. (2019). Improving the chloride binding capacity of cement paste by adding nano-Al2O3. Construction and Building Materials, 195(20 January 2019), 415–422. https://doi.org/10.1016/j.conbuildmat.2018.11.012