2,251
Views
6
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

A Comparative Evaluation of Artificial Neural Network and Sunshine Based models in prediction of Daily Global Solar Radiation of Lalibela, Ethiopia

, , & | (Reviewing editor)
Article: 1996871 | Received 11 Jun 2021, Accepted 10 Oct 2021, Published online: 27 Dec 2021

References

  • Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using differDepartment of Physics, College of Natural Science, Wollo University, Dessie, Ethiopiaent machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135(2021), 110114. https://doi.org/10.1016/j.rser.2020.110114
  • Akinoǧlu, B. G., & Ecevit, A. (1990). Construction of a quadratic model using modified Ångstrom coefficients to estimate global solar radiation. Solar Energy, 45(2), 85–12. https://doi.org/10.1016/0038-092X(90)90032-8
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9).
  • Almorox, J. Y., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10), 1529–1535. https://doi.org/10.1016/j.enconman.2003.08.022
  • Amou, K. A., Sagna, K., Lare, Y., & Napo, K. (2017). Modeling of the solar potential of Lomé, Atakpamé and mango from weather data in Togo. Science, 5(3), 58–62. https://doi.org/10.11648/j.sjee.20170503.11
  • Angstrom, A. (1924). Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121–126. https://doi.org/10.1002/qj.49705021008
  • Behrang, M. A., Assareh, E., Ghanbarzadeh, A., & Noghrehabadi, A. R. (2010). The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy, 84(8), 1468–1480. https://doi.org/10.1016/j.solener.2010.05.009
  • Benkaciali, S., Haddadi, M., Khellaf, A., Gairaa, K., & Guermoui, M. (2016). Evaluation of the global solar irradiation from the artificial neural network technique. Revue des Energies Renouvelables, 19(4), 617–631.
  • Benti, N. E., & Tadesse, G. (2017). Feasibility study of solar photovoltaic (pv) energy systems for rural villages of Ethiopian Somali region (a case study of jigjiga zone). American Journal of Science, Engineering and Technology, 1(2), 42–48. https://doi.org/10.11648/j.ajset.20160102.14
  • Chineke, T. C. (2008). Equations for estimating global solar radiation in data sparse regions. Renewable Energy, 33(4), 827–831. https://doi.org/10.1016/j.renene.2007.01.018
  • Contreras-Sepúlveda, W., Galban-Pineda, M. G., Bustos-Márquez, L. F., Sepúlveda-Mora, S. B., & Ramírez-Mateus, J. J. (2021). Angström-Prescott empirical model to estimate solar radiation in Norte de Santander, Colombia. REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN, 11(2), 413–428. https://doi.org/10.19053/20278306.v11.n2.2021.12765
  • Fan, J., Wang, X., Wu, L., Zhang, F., Bai, H., Lu, X., & Xiang, Y. (2018). New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: A case study in South China. Energy Conversion and Management, 156(2018), 618–625. https://doi.org/10.1016/j.enconman.2017.11.085
  • Gaballa, H., & Cho, S. (2019). Prediction of hourly solar radiation using temperature and humidity for real-time building energy simulation. Journal of Physics. Conference Series, 1343(1), 012049. IOP Publishing
  • Gebrehiwot, K., Mondal, M. A. H., Ringler, C., & Gebremeskel, A. G. (2019). Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia. Energy, 177(2019), 234–246. https://doi.org/10.1016/j.energy.2019.04.095
  • Gebreyohannes, Y., Bayray, M., Lauwaert, J., & Mekelle, E. (2020) Estimation of daily solar radiation using SDF and ANN regression models. 1st International Conference on Engineering and Technology/ICET2020/ (pp. 86–97).
  • https://doi.org/10.11648/j.jeece.20190403.12
  • Gueymard, C. A. (2014). A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews, 39(2014), 1024–1034. https://doi.org/10.1016/j.rser.2014.07.117
  • Hai, T., Sharafati, A., Mohammed, A., Salih, S. Q., Deo, R. C., Al-Ansari, N., & Yaseen, Z. M. (2020). Global solar radiation estimation and climatic variability analysis using extreme learning machine-based predictive model. IEEE Access, 8(2020), 12026–12042. https://doi.org/10.1109/ACCESS.2020.2965303
  • Khanlari, A., Sözen, A., Afshari, F., Şirin, C., Tuncer, A. D., & Gungor, A. (2020). Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber. Science of the Total Environment, 709(2020), 136198. https://doi.org/10.1016/j.scitotenv.2019.136198
  • Khanlari, A., Sözen, A., Şirin, C., Tuncer, A. D., & Gungor, A. (2020). Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater. Journal of Cleaner Production, 251(2020), 119672. https://doi.org/10.1016/j.jclepro.2019.119672
  • Mabel, M. C., & Fernandez, E. (2008). Analysis of wind power generation and prediction using ANN: A case study. Renewable Energy, 33(5), 986–992. https://doi.org/10.1016/j.renene.2007.06.013
  • Malik, H., Padmanabhan, V., & Sharma, R. (2019). PSO-NN-based hybrid model for long-term wind speed prediction: A study on 67 cities of India. In Applications of Artificial Intelligence Techniques in Engineering (pp. 319–327). Springer.
  • Methaprayoon, K., Yingvivatanapong, C., Lee, W. J., & Liao, J. R. (2007). An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty. IEEE Transactions on Industry Applications, 43(6), 1441–1448. https://doi.org/10.1109/TIA.2007.908203
  • Mohandes, M., Rehman, S., & Halawani, T. O. (1998). Estimation of global solar radiation using artificial neural networks. Renewable Energy, 14(1–4), 179–184. https://doi.org/10.1016/S0960-1481(98)00065-2
  • Nage, G. D. (2018). Estimation of monthly average daily solar radiation from meteorological parameters: Sunshine hours and measured temperature in Tepi, Ethiopia. International Journal of Energy and Environmental Science, 3(1), 19–26. https://doi.org/10.11648/j.ijees.20180301.12
  • NASA, World Surface Metrology. (2021). Retrieved May 16, 2021. http://power.larc.nasa.gov/cgibin/sse/[email protected]
  • Nebey, A. H., Taye, B. Z., & Workineh, T. G. (2020). Site suitability analysis of solar PV power generation in South Gondar. Amhara Region. Journal of Energy, (2020). https://doi.org/10.1155/2020/3519257
  • Palani, S., Liong, S. Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586–1597. https://doi.org/10.1016/j.marpolbul.2008.05.021
  • Paulescu, M., Stefu, N., Calinoiu, D., Paulescu, E., Pop, N., Boata, R., & Mares, O. (2016). Ångström–Prescott equation: Physical basis, empirical models and sensitivity analysis. Renewable and Sustainable Energy Reviews, 62(2016), 495–506. https://doi.org/10.1016/j.rser.2016.04.012
  • Prakash, S., Gopinath, N. P., & Suganthi, J. (2018). Wind and solar energy forecasting system using artificial neural networks. International Journal of Pure and Applied Mathematics, 118(5), 845–854.
  • Prescott, J. A. (1940). Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 46(1940), 114–118.
  • Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2017). Estimating daily global solar radiation by day of the year in six cities located in the Yucatán Peninsula, Mexico. Journal of Cleaner Production, 141(2017), 75–82. https://doi.org/10.1016/j.jclepro.2016.09.062
  • Rehman, S., & Mohandes, M. (2008). Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy, 36(2), 571–576. https://doi.org/10.1016/j.enpol.2007.09.033
  • Rehman, S., & Mohandes, M. (2009). Estimation of diffuse fraction of global solar radiation using artificial neural networks. Energy Sources, Part A, 31(11), 974–984. https://doi.org/10.1080/15567030801904582
  • Rocha, P. C., Fernandes, J. L., Modolo, A. B., Lima, R. P., Da Silva, M. V., & Bezerra, C. D. (2019). Estimation of daily, weekly and monthly global solar radiation using ANNs and a long data set: A case study of Fortaleza, in Brazilian Northeast region. International Journal of Energy and Environmental Engineering, 10(3), 319–334. https://doi.org/10.1007/s40095-019-0313-0
  • Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., & Sánchez-Girón, M. (2014). Daily global solar radiation prediction based on a hybrid coral reefs optimization–extreme learning machine approach. Solar Energy, 105(2014), 91–98. https://doi.org/10.1016/j.solener.2014.04.009
  • Stone, R. J. (1993). Improved statistical procedure for the evaluation of solar radiation estimation models. Solar Energy, 51(4), 289–291. https://doi.org/10.1016/0038-092X(93)90124-7
  • Suwarn, R. (2017). Comparison model Hargreaves, Annandale and new model for estimation of solar radiation in Perlis, Malaysia. Indonesian Journal of Electrical Engineering and Computer Science, 6(2), 286 ~ 293. https://doi.org/10.11591/ijeecs.v6.i2.pp286-293
  • Wainaina, P. M., Owino, G. O., & Njue, M. R. (2017). Solar radiation prediction models analysis for varying climatic conditions. (IJET), 9(3), .2571–2580. https://doi.org/10.21817/ijet/2017/v9i3/1709030222
  • Woldegiyorgis, T. A. (2019a). Analysis of solar PV energy systems for rural villages of Nekemte Area, Oromiya Region, Ethiopia. Journal of Modern Materials, 6(1), 13–22. https://doi.org/10.21467/jmm.6.1.13-22
  • Woldegiyorgis, T. A. (2019b). Estimation of global solar radiation on horizontal surface from sun shine hours and temperature at Kombolcha, Amhara Region, Ethiopia. Journal of Energy, Environmental & Chemical Engineering, 4(3), 39. https://doi.org/10.11648/j.jeece.20190403.12
  • Woldegiyorgis, T. A. (2020). Prediction and comparison of daily global solar radiation using meteorological data at Lalibela, North Wollo, Ethiopia. Applied Journal of Environmental Engineering Science, 6(3), .6–3. https://doi.org/10.48422/IMIST.PRSM/ajees-v6i3.22686
  • Yadav, A. K., & Chandel, S. S. (2013). Tilt angle optimization to maximize incident solar radiation: A review. Renewable and Sustainable Energy Reviews, 23(2013), 503–513. https://doi.org/10.1016/j.rser.2013.02.027
  • Yadav, A. K., & Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33(2014), 772–781. https://doi.org/10.1016/j.rser.2013.08.055
  • Yıldırım, H. B., Ö, Ç., Teke, A., & Barutçu, B. (2018). Estimating daily global solar radiation with graphical user interface in Eastern Mediterranean region of Turkey. Renewable and Sustainable Energy Reviews, 82(2018), 1528–1537. https://doi.org/10.1016/j.rser.2017.06.030
  • Younas, W., Eshetie, B., & Ondrej, K. (2016) Global solar radiation prediction using back propagation Artificial Neural Network for the City of Addis Ababa, Ethiopia. Coference paper (230–238).
  • Zhang, Q., Cui, N., Feng, Y., Jia, Y., Li, Z., & Gong, D. (2018). Comparative analysis of global solar radiation models in different regions of China. Advances in Meteorology, (2018). https://doi.org/10.1155/2018/3894831
  • Zobaa, A. F., & Bansal, R. C. (eds). (2011). Handbook of renewable energy technology. World Scientific.