873
Views
0
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Correlation of tensile strength and corrosion initiation period of reinforced concrete

, , & | (Reviewing editor)
Article: 1999039 | Received 25 May 2021, Accepted 10 Oct 2021, Published online: 17 Nov 2021

References

  • ACI Standard. (2014). Building code requirements for structural concrete (ACI 318–14). 720–730.
  • Andrade, C., Muñoz, A., & Torres-Acosta, A. (2010). Relation between crack width and corrosion degree in corroding elements exposed to the natural atmosphere. Proceedings, Fracture Mechanics of Concrete and concrete structures, Seoul, Korea: Korea Concrete Institute.
  • Aperador, W., Mejia de Getierrez, R., & Bastidas, D. M. (2009). Steel corrosion behaviour in carbonated alkali-activated slag concrete. Corrosion Science, 51(9),2027–2033. https://doi.org/10.1016/j.corsci.2009.05.033
  • Arteaga, E. B., Chateauneuf, A., Silva, M. S., Bressolette, P., & Schoefs, F. (2011). A comprehensive probabilistic model of chloride ingress in unsaturated concrete. Engineering Structures, Elsevier, 33(3).
  • Arιoglu, N., Girgin, Z. C., & Arιoglu, E. (2006). Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Material Journal, 18.
  • BS EN 1097–6:2013. (2013). Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption.
  • BS EN 12390–1:2012. (2012). Testing hardened concrete: Shape, dimensions and other requirements for specimens and moulds.
  • BS EN 12390–4. (2019). Compressive strength, specification for testing machines.
  • BS EN 12390–6 (2009). Testing hardened concrete: Tensile splitting strength of test specimens.
  • BS EN 12620:2013. (2013). Aggregates for concrete.
  • BS EN 933–1. (2012). Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method.
  • BS EN 12620. (2002). Aggregates for concrete.
  • BS EN 12390–16. (2009). Testing hardened concretepart 5: Flexural strength of specimens.
  • BS EN 12390–2. (2019). Testing hardened concretepart 2: Making and curing specimen for strength tests.
  • CEB-FIP Model Code for Concrete Structures. (1990). Evaluation of the time dependent behaviour of concrete. Bulletin d’Information No. 199, Comite European Du Béton/Fédération Internationale De laPrecontrainte, Lausanne, 1991, 201(11), 184. https://www.icevirtuallibrary.com/doi/Abs/ 10.1680/ceb-fibmc1990.35430
  • Darmawan, M. S., & Stewart, M. G. (2007). Effect of pitting corrosion on capacity of prestressing wires. Magazine of Concrete Research, 59(2), 131–139. https://doi.org/10.1680/macr.2007.59.2.131
  • DuraCrete. (2000). Probabilistic performance based durability design of concrete structures. The European Union-Brite EuRam III.
  • Ejiogu, I. K., Mamza, P. A. P., Nkeonye, P. O., & Yaro, S. A. (2020). Comparison of ACI, IS and DOE methods of concrete mix design. NJE, 27(1), 68–83.
  • Gardner, N. J. (1990). Effect of temperature on the early-age properties of type I,type III, and type I/fly ash concretes. ACI Materials Journal, 87(1), 68–78. https://concrete.org/publications/internationalconcreteabstractsportal/m/detail/id/2381
  • Huang, I.-W., & Goodwin, F. (2019). Modeling the corrosion related service life of existing concrete structures. Proceedings of the Corossion 2019, Nashville, Tennessee, USA: NACE International.
  • Khan, M. U., Ahmad, S., & Al-Gahtani, H. J. (2017). Chloride-induced corrosion of steel in concrete: An overview on chloride diffusion and prediction of corrosion initiation time. International Journal of Corrosion, 2017, 1–9. https://doi.org/10.1155/2017/5819202
  • KS EAS 18–1: 2017. (2017). Cement-part 1: Composition, specification and conformity criteria for common cements.
  • Lavanya, G., & Jegan, J. (2015). Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity. International Journal of Applied Engineering Research, 10(15), 35523–35527.
  • Mogire, P., Mwero, J., Abuodha, S., & Manguriu, G. (2018). The effect of selected cement brands in Kenya on the critical penetration depth of rust in reinforced concrete water conveyancing structures. International Journal of Scientific and Research Publications, 8(11), 8333. https://doi.org/10.29322/ijsrp.8.11.2028.p8333
  • Mogire, P., Mwero, J., Abuodha, S., & Manguriu, G. (2020). A corrosion model for prediction of service life of reinforced concrete water structures. International Journal of Scientific and Research Publications (IJSRP), 10(2), p98104. https://doi.org/10.29322/IJSRP.10.02.2020.p98104
  • Nguyen, P. T., Arteaga, E. B., Amiri, O., & Soueidy, C. (2017). An efficient chloride ingress model for long-term lifetime assessment of reinforced concrete structures under realistic climate and exposure conditions. International Journal of Concrete Structures and Materials, 11(2), 199–213. https://doi.org/10.1007/s40069-017-0185-8
  • RILEM TC 154-EMC. (2003). Electrochemical techniques for measuring metallic corrosion. Materials and Structures/Matériaux Et Constructions, 36, 461–471. https://doi.org/10.1617/13718
  • Rodriguez, J., Ortega, L. M., Casal, J., & Diez, J. M. (1996). Corrosion of reinforcement and service life of concrete structures. In Proc. Of Int. Conf. On Durability of Building Materials and Components, 1, 117–126. https://www.researchgate.net/publication/285739202
  • Sharma, M.(2020).Seismic potential parameter of concrete gravity dam. Conference: Recent trend in Civil Engineering. https://doi.org/10.13140/RG.2.2.28803.45600
  • Šmilauer, V., Hájková, K., Jendele, L., & Červenka, J. (2017). Durability assessment of reinforced concrete structures due to chloride ingress up and beyond induction period. In the 39th IABSE Symposium – Engineering the Future. September 21–23, Vancouver, Canada: IABSE/vancouver.
  • Shayan, A., & Xu, A. (2016). Relationship between reinforcing bar corrosion and concrete cracking. Aci Materials Journal, 113(1), 3–12. https://doi.org/10.14359/51688460
  • Smilauer, V., Jendele, L., & Cervenka, J. (2013). Prediction of carbonation and chloride ingress in cracked concrete structures. In the proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Stirlingshire, UK, Paper 215. https://doi.org/10.4203/ccp.102.215
  • Torres-Acosta, A., & Sagüés, A. (2004). Concrete cracking by localized steel corrosion - geometric effects. ACI Materials Journal, 101(6), 501–507. https://www.concrete.org/publications/acimaterialsjournal.aspx
  • Yihui, Z., Gencturk, B., Kaspar, W., & Arezou, A. (2014). Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. Journal of Materials in Civil Engineering, 27(9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001209.