2,526
Views
6
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Influence of various trace metallic additions and reinforcements on A319 and A356 alloys—a review

, , , , ORCID Icon & | (Reviewing editor) show all
Article: 2007746 | Received 16 Jan 2021, Accepted 13 Nov 2021, Published online: 21 Dec 2021

References

  • Abdelaziz, M. H., Samuel, A. M., Doty, H. W., & Samuel, F. H. (2020). Effect of morphological changes of eutectic Si particles on the ambient and high temperature tensile properties of Zr containing Al–Si alloys. Journal of Materials Research and Technology, 9(3), 5962–47. doi:10.1016/j.jmrt.2020.04.001
  • Abdelgnei, M. A., Omar, M. Z., Ghazali, M. J., Mohammed, M. N., & Rashid, B. (2020). Dry sliding wear behaviour of thixoformed Al-5.7Si–2Cu-0.3 Mg alloys at high temperatures using Taguchi method. Wear, 442-443, 203134. doi:10.1016/j.wear.2019.203134
  • Abdizadeh, H., & Baghchesara, M. A. (2013). Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceramics International, 39(2), 2045–2050. doi:10.1016/j.ceramint.2012.08.057
  • Abdulwahab, M., Madugu, I. A., Yaro, S. A., Hassan, S. B., & Popoola, A. P. I. (2011). Effects of multiple-step thermal ageing treatment on the hardness characteristics of A356.0-type Al–Si–Mg alloy. Materials & Design, 32(3), 1159–1166. doi:10.1016/j.matdes.2010.10.028
  • Afkham, Y., Fattahalhoseini, S. M., Khosroshahi, R. A., Avani, C., Mehrooz, N., & Mousavian, R. T. (2018). Incorporation of silicon carbide and alumina particles into the melt of A356 via electroless metallic coating followed by stir casting. Silicon, 10(5), 2353–2359. doi:10.1007/s12633-018-9771-x
  • Ahmad, Z., Khan, S., & Hasan, S. (2020). Microstructural characterization and evaluation of mechanical properties of silicon nitride reinforced LM 25 composite. Journal of Materials Research and Technology, 9(4), 9129–9135. doi:10.1016/j.jmrt.2020.06.037
  • Ajay Kumar, P., Madhu, H. C., Pariyar, A., Perugu, C. S., Kailas, S. V., Garg, U., & Rohatgi, P. (2020). Friction stir processing of squeeze cast A356 with surface compacted graphene nanoplatelets (GNPs) for the synthesis of metal matrix composites. Materials Science and Engineering: A, 769, 138517. doi:10.1016/j.msea.2019.138517
  • Akbari, M. K., Baharvandi, H. R., & Mirzaee, O. (2013). Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: Evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix. Composites Part B: Engineering, 52, 262–268. doi:10.1016/j.compositesb.2013.04.038
  • Akhil, M. G., Preenu, S., Hari, S., & Ravi, M. (2019). Effect of heat treatment on the mechanical properties of squeeze-cast Al–5Si–3Cu alloy for automotive applications. Transactions of the Indian Institute of Metals, 72(5), 1129–1132. doi:10.1007/s12666-019-01562-x
  • Alhawari, K. S., Omar, M. Z., Ghazali, M. J., Salleh, M. S., & Mohammed, M. N. (2015). Evaluation of the microstructure and dry sliding wear behaviour of thixoformed A319 aluminium alloy. Materials & Design, 76, 169–180. doi:10.1016/j.matdes.2015.03.057
  • Alhawari, K. S., Omar, M. Z., Ghazali, M. J., Salleh, M. S., & Mohammed, M. N. (2017). Microstructural evolution during semisolid processing of Al–Si–Cu alloy with different Mg contents. Transactions of Nonferrous Metals Society of China, 27(7), 1483–1497. doi:10.1016/S1003-6326(17)60169-9
  • Ambigai, R., & Prabhu, S. (2019). Fuzzy logic algorithm based optimization of the tribological behavior of Al-Gr-Si3N4 hybrid composite. Measurement, 146, 736–748. doi:10.1016/j.measurement.2019.07.025
  • Amirkhanlou, S., & Niroumand, B. (2011). Development of Al356/SiCp cast composites by injection of SiCp containing composite powders. Materials & Design, 32(4), 1895–1902. doi:10.1016/j.matdes.2010.12.013
  • Aravind Senan, V. R., Anandakrishnan, G., Rahul, S. R., Reghunath, N., & Shankar, K. V. (2020). An investigation on the impact of SiC/B4C on the mechanical properties of Al-6.6Si-0.4Mg alloy. Materials Today: Proceedings, 26(xxxx), 649–653. doi:10.1016/j.matpr.2019.12.359
  • Aybarc, U., Yavuz, H., Dispinar, D., & Seydibeyoglu, M. O. (2019). The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies. International Journal of Metalcasting, 13(1), 190–200.
  • Aziz, A. M., Omar, M. Z., & Sajuri, Z. (2020). Strength of thixoformed A319 alloy at elevated temperature. Metals and Materials International, (December 2019).
  • Behnamfard, S., Khosroshahi, R. A., Brabazon, D., & Mousavian, R. T. (2019). Study on the incorporation of ceramic nanoparticles into the semi-solid A356 melt. Materials Chemistry and Physics, 230(March), 25–36. doi:10.1016/j.matchemphys.2019.03.048
  • Beigi Khosroshahi, N., Taherzadeh Mousavian, R., Azari Khosroshahi, R., & Brabazon, D. (2015). Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles. Materials & Design, 83, 678–688. doi:10.1016/j.matdes.2015.06.027
  • Bolzoni, L., & Hari Babu, N. (2015). Refinement of the grain size of the LM25 alloy (A356) by 96Al–2Nb–2B master alloy. Journal of Materials Processing Technology, 222, 219–223. doi:10.1016/j.jmatprotec.2015.03.011
  • Borodianskiy, K., Zinigrad, M., & Gedanken, A. (2011). Aluminum A356 reinforcement by carbide nanoparticles. Journal of Nano Research, 13(June 2017), 41–46. doi:10.4028/scientific.net/JNanoR.13.41
  • Cáceres, C. H., Svensson, I. L., & Taylor, J. A. (2003). Strength-ductility behaviour of Al-Si-Cu-Mg casting alloys in T6 temper. International Journal of Cast Metals Research, 15(5), 531–543. doi:10.1080/13640461.2003.11819539
  • Cavaliere, P., Cerri, E., & Leo, P. (2005). Effect of heat treatments on mechanical properties and damage evolution of thixoformed aluminium alloys. Materials Characterization, 55(1), 35–42. doi:10.1016/j.matchar.2005.02.006
  • Choi, S.-W., Kim, Y.-M., Kim, Y.-C., & Kang, C.-S. (2019). Effects of alloying elements on mechanical and thermal characteristics of Al-6wt-%Si-0.4wt-%Mg–(Cu) foundry alloys. Materials Science and Technology, 35(11), 1365–1371. doi:10.1080/02670836.2019.1625170
  • Deepak Kumar, S., Dewangan, S., Jha, S. K., Jha, S. K., & Mandal, A. (2019). Tribo-performance of Thixoformed A356-5TiB2 in-situ Composites. IOP Conference Series: Materials Science and Engineering, 653(1), 012045. doi:10.1088/1757-899X/653/1/012045
  • Dehghan Hamedan, A., & Shahmiri, M. (2012). Production of A356–1wt% SiC nanocomposite by the modified stir casting method. Materials Science and Engineering: A, 556, 921–926. doi:10.1016/j.msea.2012.07.093
  • Dwivedi, D. K. (2004). Sliding temperature and wear behaviour of cast Al–Si–Mg alloys. Materials Science and Engineering: A, 382(1–2), 328–334. doi:10.1016/j.msea.2004.05.014
  • Dwivedi, S. P., Sharma, S., & Mishra, R. K. (2014). RETRACTED: Microstructure and Mechanical Properties of A356/SiC Composites Fabricated by Electromagnetic Stir Casting. Procedia Materials Science, 6(Icmpc), 1524–1532. doi:10.1016/j.mspro.2014.07.133
  • Elsebaie, O., Samuel, A. M., Samuel, F. H., & Doty, H. W. (2014). Impact toughness of Al–Si–Cu–Mg–Fe cast alloys: Effects of minor additives and aging conditions. Materials & Design, 60, 496–509. doi:10.1016/j.matdes.2014.04.031
  • Emadi, D., Rao, A. K. P., & Mahfoud, M. (2010). Influence of scandium on the microstructure and mechanical properties of A319 alloy. Materials Science and Engineering: A, 527(23), 6123–6132. doi:10.1016/j.msea.2010.06.042
  • Espinoza-cuadra, J., Gallegos-acevedo, P., Mancha-molinar, H., & Picado, A. (2010). Effect of Sr and solidification conditions on characteristics of intermetallic in Al–Si 319 industrial alloys. Materials & Design, 31(1), 343–356. doi:10.1016/j.matdes.2009.06.017
  • Fernández, H., Ordoñez, S., Pesenti, H., González, R. E., & Leoni, M. (2019). Microstructure homogeneity of milled aluminum A356–Si3N4 metal matrix composite powders. Journal of Materials Research and Technology, 8(3), 2969–2977. doi:10.1016/j.jmrt.2019.05.004
  • Firouzdor, V., Rajabi, M., Nejati, E., & Khomamizadeh, F. (2007). Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy. Materials Science and Engineering: A, 454-455, 528–535. doi:10.1016/j.msea.2007.01.018
  • Fortini, A., Merlin, M., Fabbri, E., Pirletti, S., & Garagnani, G. L. (2016). On the influence of Mn and Mg additions on tensile properties, microstructure and quality index of the A356 aluminum foundry alloy. Procedia Structural Integrity, 2, 2238–2245. doi:10.1016/j.prostr.2016.06.280
  • García-García, G., Espinoza-Cuadra, J., & Mancha-Molinar, H. (2007). Copper content and cooling rate effects over second phase particles behavior in industrial aluminum–silicon alloy 319. Materials & Design, 28(2), 428–433. doi:10.1016/j.matdes.2005.09.021
  • Gavel, A., Poria, S., & Sahoo, P. (2019). Design of experiments analysis of abrasive friction behavior of Al-TiB2 composites. Materials Today: Proceedings, 19(xxxx), 218–222. doi:10.1016/j.matpr.2019.06.705
  • Ghandvar, H., Idris, M. H., Ahmad, N., & Moslemi, N. (2017). Microstructure development, mechanical and tribological properties of a semisolid A356/xSiCp composite. Journal of Applied Research and Technology, 15(6), 533–544. doi:10.1016/j.jart.2017.06.002
  • Gopi Krishna, M., Praveen Kumar, K., Naga Swapna, M., Babu Rao, J., & Bhargava, N. R. M. R. (2018). Fabrication, characterization and mechanical behaviour of A356/ copper particulate reinforced metallic composites. Materials Today: Proceedings, 5(2), 7685–7691. doi:10.1016/j.matpr.2017.11.444
  • Gupta, P. K., & Srivastava, R. K. (2018). Fabrication of ceramic reinforcement aluminium and its alloys metal matrix composite materials: A review. Materials Today: Proceedings, 5(9), 18761–18775. doi:10.1016/j.matpr.2018.06.223
  • Gurusamy, P., Tamilselvan, S., Saravanan, S., & Nantha Gopal, D. (2020). Experimental investigation of AA2014 alloy with reinforcement of fly ash and SiC hybrid composites by stir casting method. Materials Today: Proceedings, (xxxx), 4–8.
  • Han, Y., Samuel, A. M., Doty, H. W., Valtierra, S., & Samuel, F. H. (2014). Optimizing the tensile properties of Al–Si–Cu–Mg 319-type alloys: Role of solution heat treatment. Materials & Design, 58, 426–438. doi:10.1016/j.matdes.2014.01.060
  • Hanizam, H., Salleh, M. S., Omar, M. Z., & Sulong, A. B. (2019). Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes–aluminium alloy composite through Taguchi method. Journal of Materials Research and Technology, 8(2), 2223–2231. doi:10.1016/j.jmrt.2019.02.008
  • Haro, S., Ramírez, J., Dwivedi, D. K., & Martínez, E. (2009). Influence of solutionising and aging temperatures on microstructure and mechanical properties of cast Al–Si–Cu alloy. Materials Science and Technology, 25(7), 886–891. doi:10.1179/174328408X327722
  • Haro-Rodríguez, S., Goytia-Reyes, R. E., Dwivedi, D. K., Baltazar-Hernández, V. H., Flores-Zúñiga, H., & Pérez-López, M. J. (2011). On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al–Si–Mg alloy. Materials & Design, 32(4), 1865–1871. doi:10.1016/j.matdes.2010.12.012
  • Haskel, T., Verran, G. O., & Barbieri, R. (2018). Rotating and bending fatigue behavior of A356 aluminum alloy: Effects of strontium addition and T6 heat treatment. International Journal of Fatigue, 114(April), 1–10. doi:10.1016/j.ijfatigue.2018.04.012
  • Hernandez-Sandoval, J., Garza-Elizondo, G. H., Samuel, A. M., Valtiierra, S., & Samuel, F. H. (2014). The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Materials & Design, 58, 89–101. doi:10.1016/j.matdes.2014.01.041
  • Hu, K., Yuan, D., Lin Lu, S., & Sen Wu, S. (2018). Effects of nano-SiCp content on microstructure and mechanical properties of SiCp/A356 composites assisted with ultrasonic treatment. Transactions of Nonferrous Metals Society of China, 28(11), 2173–2180. doi:10.1016/S1003-6326(18)64862-9
  • Hwang, J. Y., Banerjee, R., Doty, H. W., & Kaufman, M. J. (2009). The effect of Mg on the structure and properties of Type 319 aluminum casting alloys. Acta Materialia, 57(4), 1308–1317. doi:10.1016/j.actamat.2008.11.021
  • Ibrahim, M. F., Samuel, E., Samuel, A. M., Al-Ahmari, A. M. A., & Samuel, F. H. (2011a). Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys. Materials & Design, 32(4), 2130–2142. doi:10.1016/j.matdes.2010.11.040
  • Ibrahim, M. F., Samuel, E., Samuel, A. M., Al-Ahmari, A. M. A., & Samuel, F. H. (2011b). Impact toughness and fractography of Al–Si–Cu–Mg base alloys. Materials & Design, 32(7), 3900–3910. doi:10.1016/j.matdes.2011.02.058
  • Jadhav, P. R., Sridhar, B. R., Nagaral, M., & Harti, J. I. (2017). Evaluation of Mechanical Properties of B 4 C and Graphite Particulates Reinforced A356 alloy Hybrid Composites. Materials Today: Proceedings, 4(9), 9972–9976. doi:10.1016/j.matpr.2017.06.304
  • Jalilvand, M. M., Mazaheri, Y., Heidarpour, A., & Roknian, M. (2019). Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing. Surface and Coatings Technology, 360(January), 121–132. doi:10.1016/j.surfcoat.2018.12.126
  • Jamaati, R., Amirkhanlou, S., Toroghinejad, M. R., & Niroumand, B. (2012). Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. Journal of Materials Engineering and Performance, 21(7), 1249–1253. doi:10.1007/s11665-011-0045-7
  • Joseph, J. et al. (2020). Mechanical behaviour of age hardened A356/TiC metal matrix composite. Materials Today: Proceedings, (xxxx), 0–5.
  • Kandemir, S., Atkinson, H. V., Weston, D. P., & Hainsworth, S. V. (2014). Thixoforming of A356/SiC and A356/TiB2 nanocomposites fabricated by a combination of green compact nanoparticle incorporation and ultrasonic treatment of the melted compact. Metallurgical and Materials Transactions A, 45(12), 5782–5798. doi:10.1007/s11661-014-2501-0
  • Karbalaei Akbari, M., Baharvandi, H. R., & Shirvanimoghaddam, K. (2015). Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Materials & Design (1980-2015), 66(PA), 150–161. doi:10.1016/j.matdes.2014.10.048
  • Karbalaei Akbari, M., Mirzaee, O., & Baharvandi, H. R. (2013). Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Materials & Design, 46, 199–205. doi:10.1016/j.matdes.2012.10.008
  • Khademian, M., Alizadeh, A., & Abdollahi, A. (2017). Fabrication and characterization of hot rolled and hot extruded boron carbide (B4C) reinforced A356 aluminum alloy matrix composites produced by stir casting method. Transactions of the Indian Institute of Metals, 70(6), 1635–1646. doi:10.1007/s12666-016-0962-0
  • Kori, S. A., & Prabhudev, M. S. (2011). Sliding wear characteristics of Al–7Si–0.3Mg alloy with minor additions of copper at elevated temperature. Wear, 271(5–6), 680–688. doi:10.1016/j.wear.2010.12.080
  • Krishna, A. R., Arun, A., Unnikrishnan, D., & Shankar, K. V. (2018). An investigation on the mechanical and tribological properties of alloy A356 on the addition of WC. Materials Today: Proceedings, 5(5), 12349–12355. doi:10.1016/j.matpr.2018.02.213
  • Kumar, G. S. V., Murty, B. S., & Chakraborty, M. (2009). Grain refinement response of LM25 alloy towards Al–Ti–C and Al–Ti–B grain refiners. Journal of Alloys and Compounds, 472(1–2), 112–120. doi:10.1016/j.jallcom.2008.04.095
  • Kumar, H., Prasad, R., Kumar, P., Tewari, S. P., & Singh, J. K. (2020). Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. Journal of Alloys and Compounds, 831, 154832. doi:10.1016/j.jallcom.2020.154832
  • Kumar, P. N. S., Sachit, T. S., Mohan, N., & Akshayprasad, M. (2020). Dry sliding wear behaviour of Al – 5Si-3Cu-0.5Mn alloy and its WC reinforced composites at elevated temperatures. Materials Today: Proceedings, (xxxx).
  • Kumar, T. A., Anne, G., Prasanna, N. D., & Muralidhara, M. K. (2014). Effect of electromagnetic induction and heat treatment on the mechanical and wear properties of LM25 alloy. Procedia Materials Science, 5, 550–557. doi:10.1016/j.mspro.2014.07.299
  • Kumari, S. S. S., Pillai, R. M., & Pai, B. C. (2008). Structure and properties of calcium and strontium treated Al–7Si–0.3Mg alloy: A comparison. Journal of Alloys and Compounds, 460(1–2), 472–477. doi:10.1016/j.jallcom.2007.05.085
  • Lal, S., Kumar, A., Kumar, S., & Gupta, N. (2020). Characterization of A356/B4C composite fabricated by electromagnetic stir-casting process with vacuum. Materials Today: Proceedings, (xxxx).
  • Lashgari, H. R., Zangeneh, S., Shahmir, H., Saghafi, M., & Emamy, M. (2010). Heat treatment effect on the microstructure, tensile properties and dry sliding wear behavior of A356–10%B4C cast composites. Materials & Design, 31(9), 4414–4422. doi:10.1016/j.matdes.2010.04.034
  • Li, G., Xu, T., Wang, H., Zhao, Y., Chen, G., & Kai, X. (2021). Microstructure study of hot rolling nanosized in-situ Al2O3 particle reinforced A356 matrix composites. Journal of Alloys and Compounds, 855, 157107. doi:10.1016/j.jallcom.2020.157107
  • Li, M., Li, Y., & Zhou, H. (2020). Effects of pouring temperature on microstructure and mechanical properties of the A356 aluminum alloy diecastings. Materials Research, 23(1), 1–11. doi:10.1590/1980-5373-mr-2019-0676
  • Li, P., Liu, S., Zhang, L., & Liu, X. (2013). Grain refinement of A356 alloy by Al–Ti–B–C master alloy and its effect on mechanical properties. Materials & Design, 47, 522–528. doi:10.1016/j.matdes.2012.12.033
  • Li, Z., Limodin, N., Tandjaoui, A., Quaegebeur, P., Osmond, P., & Balloy, D. (2017). Influence of Sr, Fe and Mn content and casting process on the microstructures and mechanical properties of AlSi7Cu3 alloy. Materials Science and Engineering: A, 689(February), 286–297. doi:10.1016/j.msea.2017.02.041
  • Liu, K., & Chen, X. G. (2019). Influence of the modification of iron-bearing intermetallic and eutectic Si on the mechanical behavior near the solidus temperature in Al-Si-Cu 319 cast alloy. Physica B: Condensed Matter, 560(January), 126–132. doi:10.1016/j.physb.2019.02.022
  • Liu, W., Xiao, W., Xu, C., Liu, M., & Ma, C. (2017). Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy. Materials Science and Engineering: A, 693, 93–100. doi:10.1016/j.msea.2017.03.097
  • Liu, Z., Wang, X., Han, Q., & Li, J. (2014). Effects of the addition of Ti powders on the microstructure and mechanical properties of A356 alloy. Powder Technology, 253, 751–756. doi:10.1016/j.powtec.2013.12.052
  • Lombardi, A., D’Elia, F., Ravindran, C., & Mackay, R. (2014). Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings. Materials Characterization, 87, 125–137. doi:10.1016/j.matchar.2013.11.006
  • Lombardi, A., Ravindran, C., & MacKay, R. (2015). Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method. Materials Science and Engineering: A, 633, 125–135. doi:10.1016/j.msea.2015.02.076
  • Luo, X., Han, Y., Li, Q., Hu, X., Li, Y., & Zhou, Y. (2019). Effect of pouring temperature on microstructure and properties of A356 alloy strip by a novel semisolid micro fused-casting for metal. Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(5), 1205–1209. doi:10.1007/s11595-019-2179-7
  • Majeed, F. S. A., Bin Mohd Yusof, N., Azlan Suhaimi, M., Bin Ahmad, R., Basher Asmael, M., & Sallehuddin Bin Yusof, M. (2020). Outcome of mix Ce and Er addition on solidification microstructure of the LM25 (Al-7Si-alloy). Materials Today: Proceedings, 25(3).
  • Mandal, A., Murty, B. S., & Chakraborty, M. (2009). Sliding wear behaviour of T6 treated A356–TiB2 in-situ composites. Wear, 266(7–8), 865–872. doi:10.1016/j.wear.2008.12.011
  • Manuscript, A. (2019). Wear rate optimization of tungsten carbide (WC) nano particles reinforced aluminum LM4 alloy composites using taguchi techniques. pp. 0–18, .
  • Mazaheri, Y., Karimzadeh, F., & Enayati, M. H. (2011). A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. Journal of Materials Processing Technology, 211(10), 1614–1619. doi:10.1016/j.jmatprotec.2011.04.015
  • Mazahery, A., Abdizadeh, H., & Baharvandi, H. R. (2009). Development of high-performance A356/nano-Al2O3 composites. Materials Science and Engineering: A, 518(1–2), 61–64. doi:10.1016/j.msea.2009.04.014
  • Medrano-Prieto, H. M., Garay-Reyes, C. G., Gómez-Esparza, C. D., Estrada-Guel, I., Aguilar-Santillan, J., Maldonado-Orozco, M. C., & Martínez-Sánchez, R. (2016). Effect of nickel addition and solution treatment time on microstructure and hardness of Al-Si-Cu aged alloys. Materials Characterization, 120, 168–174. doi:10.1016/j.matchar.2016.08.020
  • Mo, D.-F., He, G.-Q., Hu, Z.-F., Liu, X.-S., & Zhang, W.-H. (2010). Effect of microstructural features on fatigue behavior in A319-T6 aluminum alloy. Materials Science and Engineering: A, 527(15), 3420–3426. doi:10.1016/j.msea.2010.02.055
  • Mohamed, A. M. A., Samuel, F. H., & Al Kahtani, S. (2012). Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys. Materials Science and Engineering: A, 543, 22–34. doi:10.1016/j.msea.2012.02.032
  • Mohan, A., & Sajikumar, K. S. (2020). Fabrication and characterization of centrifugally cast functionally graded A 356-SiCp metal matrix composites. Materials Today: Proceedings, (xxxx).
  • Mohanavel, V. (2019). Synthesis and evaluation on mechanical properties of LM4/AIN alloy based composites. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–10.
  • Mousavian, R. T., Behnamfard, S., Khosroshahi, R. A., Zavašnik, J., Ghosh, P., Krishnamurthy, S., Heidarzadeh, A., & Brabazon, D. (2020). Strength-ductility trade-off via SiC nanoparticle dispersion in A356 aluminium matrix. Materials Science and Engineering: A, 771, 138639. doi:10.1016/j.msea.2019.138639
  • Mousavian, R. T., Khosroshahi, R. A., Yazdani, S., & Brabazon, D. (2017). Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles. Rare Metals, 36(1), 46–54. doi:10.1007/s12598-015-0689-9
  • Otani, L. B., Matsuo, M. M., Freitas, B. J. M., Zepon, G., Kiminami, C. S., Botta, W. J., & Bolfarini, C. (2019). Tailoring the microstructure of recycled 319 aluminum alloy aiming at high ductility. Journal of Materials Research and Technology, 8(4), 3539–3549. doi:10.1016/j.jmrt.2019.06.030
  • Patakham, U., Kajornchaiyakul, J., & Limmaneevichitr, C. (2012). Grain refinement mechanism in an Al–Si–Mg alloy with scandium. Journal of Alloys and Compounds, 542, 177–186. doi:10.1016/j.jallcom.2012.07.018
  • Poria, S., Sahoo, P., & Sutradhar, G. (2016). Tribological characterization of stir-cast aluminium-TiB2 metal matrix composites. Silicon, 8(4), 591–599. doi:10.1007/s12633-016-9437-5
  • Poria, S., Sahoo, P., & Sutradhar, G. (2018a). Tribological characteristics of stir-cast Al-TiB2 metal matrix composites in lubricated condition using Taguchi based grey relation analysis. Materials Today: Proceedings, 5(11), 23629–23637. doi:10.1016/j.matpr.2018.10.152
  • Poria, S., Sahoo, P., & Sutradhar, G. (2018b). Design of experiments analysis of wear behavior of stir cast Al-TiB2 composite in lubricated condition. Materials Today: Proceedings, 5(2), 5221–5228. doi:10.1016/j.matpr.2017.12.104
  • Poria, S., Sutradhar, G., & Sahoo, P. (2017). Design of Experiments Analysis of Friction Behavior of Al-TiB 2 Composite. Materials Today: Proceedings, 4(2), 2956–2964. doi:10.1016/j.matpr.2017.02.177
  • Poria, S., Sutradhar, G., & Sahoo, P. (2019a). Design of experiments analysis of abrasive wear behavior of stir cast Al-TiB2 composites. Materials Today: Proceedings, 18, 4253–4260. doi:10.1016/j.matpr.2019.07.383
  • Poria, S., Sutradhar, G., & Sahoo, P. (2019b). Corrosion behavior of stir-cast Al–TiB 2 metal matrix composites. International Journal of Materials Research, 110(2), 148–154. doi:10.3139/146.111731
  • Prabhudev, M. S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N. H., & Kori, S. A. (2014). Influence of Cu addition on dry sliding wear behaviour of A356 alloy. Procedia Engineering, 97, 1361–1367. doi:10.1016/j.proeng.2014.12.417
  • Pramod, S. L., Prasada Rao, A. K., Murty, B. S., & Bakshi, S. R. (2015). Effect of Sc addition on the microstructure and wear properties of A356 alloy and A356–TiB2 in situ composite. Materials & Design, 78, 85–94. doi:10.1016/j.matdes.2015.04.026
  • Prasada Rao, A. K., Das, K., Murty, B. S., & Chakraborty, M. (2006). Microstructural and wear behavior of hypoeutectic Al–Si alloy (LM25) grain refined and modified with Al–Ti–C–Sr master alloy. Wear, 261(2), 133–139. doi:10.1016/j.wear.2005.09.012
  • Qiu, H., Yan, H., & Hu, Z. (2013). Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys. Journal of Alloys and Compounds, 567, 77–81. doi:10.1016/j.jallcom.2013.03.050
  • Radhika, N. (2018). Comparison of the mechanical and wear behaviour of aluminium alloy with homogeneous and functionally graded silicon nitride composites. Science and Engineering of Composite Materials, 25(2), 261–271. doi:10.1515/secm-2015-0160
  • Radhika, N., Sasikumar, J., & Arulmozhivarman, J. (2020). Tribo-mechanical behaviour of Ti-based particulate reinforced as-cast and heat treated A359 composites. Silicon, 12(11), 2769–2782. doi:10.1007/s12633-019-00370-8
  • Raghavendra Rao, P. S., & Mohan, C. B. (2020). Study on mechanical performance of silicon nitride reinforced aluminium metal matrix composites. Materials Today: Proceedings, (xxxx), 2–6.
  • Rajaram, G., Kumaran, S., & Rao, T. S. (2010). High temperature tensile and wear behaviour of aluminum silicon alloy. Materials Science and Engineering: A, 528(1), 247–253. doi:10.1016/j.msea.2010.09.020
  • Rajeev, V. R., Dwivedi, D. K., & Jain, S. C. (2010a). Effect of load and reciprocating velocity on the transition from mild to severe wear behavior of Al-Si-SiCp composites in reciprocating conditions. Materials & Design, 31(10), 4951–4959. doi:10.1016/j.matdes.2010.05.010
  • Rajeev, V. R., Dwivedi, D. K., & Jain, S. C. (2010b). Dry reciprocating wear of Al-Si-SiCp composites: A statistical analysis. Tribology International, 43(8), 1532–1541. doi:10.1016/j.triboint.2010.02.014
  • Rashnoo, K., Sharifi, M. J., Azadi, M., & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics, 255, 123441. doi:10.1016/j.matchemphys.2020.123441
  • Ravi, M., Pillai, U. T. S., Pai, B. C., Damodaran, A. D., & Dwarakadasa, E. S. (1998). Mechanical properties of cast Al-7Si-0.3Mg (LM 25/356) alloy. International Journal of Cast Metals Research, 11(2), 113–125. doi:10.1080/13640461.1998.11819265
  • Rincon, E., Lopez, H. F., Cisneros, M. M., & Mancha, H. (2009). Temperature effects on the tensile properties of cast and heat treated aluminum alloy A319. Materials Science and Engineering: A, 519(1–2), 128–140. doi:10.1016/j.msea.2009.05.022
  • Rincón, E., López, H. F., Cisneros, M. M., Mancha, H., & Cisneros, M. A. (2007). Effect of temperature on the tensile properties of an as-cast aluminum alloy A319. Materials Science and Engineering: A, 452-453, 682–687. doi:10.1016/j.msea.2006.11.029
  • Robles Hernández, F. C., & Sokolowski, J. H. (2009). Effects and on-line prediction of electromagnetic stirring on microstructure refinement of the 319 Al–Si hypoeutectic alloy. Journal of Alloys and Compounds, 480(2), 416–421. doi:10.1016/j.jallcom.2009.02.109
  • Sachit, T. S., Sapthagiri Prasad, N., & Aameer Khan, M. (2018). Effect of particle size on mechanical and tribological behavior of LM4/SiCp based MMC. Materials Today: Proceedings, 5(2), 5901–5907. doi:10.1016/j.matpr.2017.12.189
  • Salleh, M. S. et al. (2020). T6 heat treatment optimization of thixoformed LM4 aluminium alloy using response surface methodology. Malaysian Journal on Composites Science & Manufacturing, 3(1), 1–13.
  • Salleh, M. S., Omar, M. Z., Alhawari, K. S., Mohammed, M. N., Ali, M. A. M., & Mohamad, E. (2016). Microstructural evolution and mechanical properties of thixoformed A319 alloys containing variable amounts of magnesium. Transactions of Nonferrous Metals Society of China, 26(8), 2029–2042. doi:10.1016/S1003-6326(16)64321-2
  • Salleh, M. S., Omar, M. Z., & Syarif, J. (2015). The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys. Journal of Alloys and Compounds, 621, 121–130. doi:10.1016/j.jallcom.2014.09.152
  • Salleh, M. S., Omar, M. Z., Syarif, J., Alhawari, K. S., & Mohammed, M. N. (2014). Microstructure and mechanical properties of thixoformed A319 aluminium alloy. Materials & Design, 64, 142–152. doi:10.1016/j.matdes.2014.07.014
  • Samuel, A. M., Elgallad, E. M., Doty, H. W., Valtierra, S., & Samuel, F. H. (2016). Effect of metallurgical parameters on the microstructure, hardness impact properties, and fractography of Al-(6.5–11.5) wt% Si based alloys. Materials & Design, 107, 426–439. doi:10.1016/j.matdes.2016.06.051
  • Samuel, E., Golbahar, B., Samuel, A. M., Doty, H. W., Valtierra, S., & Samuel, F. H. (2014). Effect of grain refiner on the tensile and impact properties of Al–Si–Mg cast alloys. Materials & Design (1980-2015), 56, 468–479. doi:10.1016/j.matdes.2013.11.058
  • Sarada, B. N., Murthy, P. L. S., & Ugrasen, G. (2015). Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique. Materials Today: Proceedings, 2(4–5), 2878–2885. doi:10.1016/j.matpr.2015.07.305
  • Sekar, K., Allesu, K., & Joseph, M. A. (2014). Effect of T6 heat treatment in the microstructure and mechanical properties of A356 reinforced with nano Al2O3 particles by combination effect of stir and squeeze casting. Procedia Materials Science, 5, 444–453. doi:10.1016/j.mspro.2014.07.287
  • Senthil Kumar, M., Vanmathi, M., & Sakthivel, G. (2020). SiC reinforcement in the synthesis and characterization of A356/Al2O3/SiC/Gr reinforced composite- Paving a way for the next generation of aircraft applications. Silicon.
  • Sepehrband, P., Mahmudi, R., & Khomamizadeh, F. (2005). Effect of Zr addition on the aging behavior of A319 aluminum cast alloy. Scripta Materialia, 52(4), 253–257. doi:10.1016/j.scriptamat.2004.10.025
  • Shaha, S. K., Czerwinski, F., Kasprzak, W., Friedman, J., & Chen, D. L. (2016). Effect of Mn and heat treatment on improvements in static strength and low-cycle fatigue life of an Al–Si–Cu–Mg alloy. Materials Science and Engineering: A, 657, 441–452. doi:10.1016/j.msea.2016.01.015
  • Shalaby, E. A. M., Churyumov, A. Y., Solonin, A. N., & Lotfy, A. (2016). Preparation and characterization of hybrid A359/(SiC+Si3N4) composites synthesized by stir/squeeze casting techniques. Materials Science and Engineering: A, 674, 18–24. doi:10.1016/j.msea.2016.07.058
  • Shanmugaselvam, P., Yogaraj, J. N. R., Sivaraj, S., & Jayakrishnan, N. (2020). Fabrication and evaluation of tribological behaviour and hardness of aluminium-LM4 reinforced with nano alumina and micro Mo. Materials Today: Proceedings, (xxxx), 2–6.
  • Shi, Q., Huo, Y., Berman, T., Ghaffari, B., Li, M., & Allison, J. (2021). Distribution of transition metal elements in an Al-Si-Cu-based alloy. Scripta Materialia, 190, 97–102. doi:10.1016/j.scriptamat.2020.08.034
  • Singh, D., & Gupta, T. V. (2015). Effect of pouring temperature on surface roughness of LM4 aluminium alloy using die casting process. International Journal of Mechanical Engineering, 5(2), 118–121.
  • Sokolowski, J. H., Djurdjevic, M. B., Kierkus, C. A., & Northwood, D. O. (2001). Improvement of 319 aluminum alloy casting durability by high temperature solution treatment. Journal of Materials Processing Technology, 109(1–2), 174–180. doi:10.1016/S0924-0136(00)00793-7
  • Sridhar, H. S., Sanman, S., Prasad, T. B., & Chandra, B. T. (2020). Effect of reinforcement and applied load on three-body dry sand abrasive wear behavior of A356 bottom ash metal matrix composites. Materials Today: Proceedings, 26(xxxx), 2814–2816. doi:10.1016/j.matpr.2020.02.586
  • Srinivasan, A., Pillai, U. T. S., & Pai, B. C. (2006). Effect of pouring temperature on the microstructure and the mechanical properties of low pressure sand cast LM25 (Al-7Si-0.3Mg) alloy. International Journal of Microstructure and Materials Properties, 1(2), 139–148.
  • Sunil Kumar, M., Sathisha, N., & Tilak Chandra, B. (2020). A study on effect of chill casting on A356 reinforced with hematite metal matrix composite. Materials Today: Proceedings, (xxxx), 2–7.
  • Tavitas-Medrano, F. J., Gruzleski, J. E., Samuel, F. H., Valtierra, S., & Doty, H. W. (2008). Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging. Materials Science and Engineering: A, 480(1–2), 356–364. doi:10.1016/j.msea.2007.09.002
  • Timelli, G., Lohne, O., Arnberg, L., & Laukli, H. I. (2008). Effect of solution heat treatments on the microstructure and mechanical properties of a die-cast AlSi7MgMn alloy. Metallurgical and Materials Transactions A, 39(7), 1747–1758. doi:10.1007/s11661-008-9527-0
  • Tiryakioglu, M., & Totten, G. E. (1998). Quenching aluminum components in water: Problems and alternatives. ASM Proceedings Heat Treating, (January), 156–165.
  • Tzeng, Y.-C., Wu, C.-T., Bor, H.-Y., Horng, J.-L., Tsai, M.-L., & Lee, S.-L. (2014). Effects of scandium addition on iron-bearing phases and tensile properties of Al–7Si–0.6Mg alloys. Materials Science and Engineering: A, 593, 103–110. doi:10.1016/j.msea.2013.11.039
  • Vandersluis, E., Lombardi, A., Ravindran, C., Bois-Brochu, A., Chiesa, F., & MacKay, R. (2015). Factors influencing thermal conductivity and mechanical properties in 319 Al alloy cylinder heads. Materials Science and Engineering: A, 648, 401–411. doi:10.1016/j.msea.2015.09.091
  • Vandersluis, E., & Ravindran, C. (2020). Effects of solution heat treatment time on the as-quenched microstructure, hardness and electrical conductivity of B319 aluminum alloy. Journal of Alloys and Compounds, 838, 155577. doi:10.1016/j.jallcom.2020.155577
  • Vandersluis, E., Ravindran, C., Sediako, D., Elsayed, A., & Byczynski, G. (2019). Strontium-modification in the stepwise solidification of A319 Al alloy: An in-situ neutron diffraction study. Journal of Alloys and Compounds, 792, 240–249. doi:10.1016/j.jallcom.2019.04.037
  • Viswanatha, B. M., Prasanna Kumar, M., Basavarajappa, S., & Kiran, T. S. (2013). Mechanical property evaluation of A356/SiCp/Gr metal matrix composites. Journal of Engineering Science and Technology, 8(6), 754–763.
  • Wang, L., Limodin, N., El Bartali, A., Witz, J.-F., Seghir, R., Buffiere, J.-Y., & Charkaluk, E. (2016). Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Materials Science and Engineering: A, 673, 362–372. doi:10.1016/j.msea.2016.07.036
  • Wang, M., Chen, D., Chen, Z., Wu, Y., Wang, F., Ma, N., & Wang, H. (2014). Mechanical properties of in-situ TiB2/A356 composites. Materials Science and Engineering: A, 590, 246–254. doi:10.1016/j.msea.2013.10.021
  • Wang, T., Zhao, Y., Chen, Z., Zheng, Y., & Kang, H. (2015). Combining effects of TiB2 and La on the aging behavior of A356 alloy. Materials Science and Engineering: A, 644, 425–430. doi:10.1016/j.msea.2015.07.076
  • Wu, X., Zhang, H., Zhang, F., Ma, Z., Jia, L., Yang, B., Tao, T., & Zhang, H. (2018). Effect of cooling rate and Co content on the formation of Fe-rich intermetallics in hypoeutectic Al7Si0.3Mg alloy with 0.5%Fe. Materials Characterization, 139(January), 116–124. doi:10.1016/j.matchar.2018.02.029
  • Wu, Y., Liao, H., Zhou, K., & Yang, J. (2014). Effect of texture evolution on mechanical properties of near eutectic Al–Si–Mg alloy with minor addition of Zr/V during hot extrusion. Materials & Design, 57, 416–420. doi:10.1016/j.matdes.2013.12.068
  • Xu, C., Xiao, W., Zheng, R., Hanada, S., Yamagata, H., & Ma, C. (2015). The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy. Materials & Design, 88, 485–492. doi:10.1016/j.matdes.2015.09.045
  • Yadav, D. K., & Chakrabarty, I. (2020). Effect of cooling slope casting and partial remelting treatment on microstructure and mechanical properties of A319-xMg2Si In-Situ composites. Materials Science and Engineering: A, 791(April), 139790. doi:10.1016/j.msea.2020.139790
  • Yaghobizadeh, O., Baharvandi, H. R., Ahmadi, A. R., & Aghaei, E. (2019). Development of the properties of Al/SiC nano-composite fabricated by stir cast method by means of coating SiC particles with Al. Silicon, 11(2), 643–649. doi:10.1007/s12633-018-9867-3
  • Yang, Y., Lan, J., & Li, X. (2004). Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering: A, 380(1–2), 378–383. doi:10.1016/j.msea.2004.03.073
  • Yuan, D., Yang, X., Wu, S., Lü, S., & Hu, K. (2019). Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. Journal of Materials Processing Technology, 269(January), 1–9. doi:10.1016/j.jmatprotec.2019.01.021
  • Zhang, Q., Wei, S., Gu, J., & Qi, M. (2020). High temperature dry sliding wear behavior of Al–12Si–CuNiMg alloy and its Al2O3 fiber-reinforced composite. Metals and Materials International, 0123456789.
  • Zhang, W., Liu, Y., Yang, J., Dang, J., Xu, H., & Du, Z. (2012). Effects of Sc content on the microstructure of As-Cast Al-7wt.% Si alloys. Materials Characterization, 66, 104–110. doi:10.1016/j.matchar.2011.11.005
  • Zhu, M., Jian, Z., Yang, G., & Zhou, Y. (2012). Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys. Materials & Design (1980-2015), 36, 243–249. doi:10.1016/j.matdes.2011.11.018