1,844
Views
2
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Performance and emission study of low HCNG fuel blend in SI engine with fixed ignition timing

ORCID Icon, & | (Reviewing editor)
Article: 2010925 | Received 29 Oct 2021, Accepted 18 Nov 2021, Published online: 22 Dec 2021

References

  • Akansu, S. O., Kahraman, N., & Çeper, B. (2007). Experimental study on a spark ignition engine fuelled by methane–hydrogen mixtures. International Journal of Hydrogen Energy, 32(17), 4279–14. https://doi.org/10.1016/j.ijhydene.2007.05.034
  • Amirante, R., Distaso, E., Tamburrano, P., & Reitz, R. D. (2017). Laminar flame speed correlations for methane, ethane, propane and their mixtures, and natural gas and gasoline for spark-ignition engine simulations. International Journal of Engine Research, 18(9), 951–970. https://doi.org/10.1177/1468087417720018
  • Baratta, M., Misul, D., & Jiajie, X. (2021). Development and application of a method for characterizing mixture formation in a port-injection natural gas engine. Energy Conversion and Management, 227, 113595. https://doi.org/10.1016/j.enconman.2020.113595
  • Erfan, I., Chitsaz, I., Ziabasharhagh, M., Hajialimohammadi, A., & Fleck, B. (2015). Injection characteristics of gaseous jet injected by a single-hole nozzle direct injector. Fuel, 160, 24–34. https://doi.org/10.1016/j.fuel.2015.07.037
  • Gong, C., Li, Z., Yi, L., & Liu, F. (2019). Comparative study on combustion and emissions between methanol port-injection engine and methanol direct-injection engine with H2-enriched port injection under lean-burn conditions. Energy Conversion and Management, 200, 112096. https://doi.org/10.1016/j.enconman.2019.112096
  • Hu, E., Huang, Z., He, J., & Miao, H. (2009). Experimental and numerical study on laminar burning velocities and flame instabilities of hydrogen-air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 34(20), 8741–8755. https://doi.org/10.1016/j.ijhydene.2009.08.044
  • Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q., & Jiang, D. (2006). Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures. Combustion and Flame, 146(1–2), 302–311. https://doi.org/10.1016/j.combustflame.2006.03.003
  • Ilbasa, M., Crayford, A. P., Yılmaza, I., Bowen, P. J., & Syred, N. (2006). Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study. International Journal of Hydrogen Energy, 31(12), 1768–1779. https://doi.org/10.1016/j.ijhydene.2005.12.007
  • Ji, C., & Wang, S. (2013). Combustion and emissions performance of a hydrogen engine at idle and lean conditions. International Journal of Energy Research, 37(5), 468–474. https://doi.org/10.1002/er.3020
  • Kosmadakis, G. M., Rakopoulos, D. C., & Rakopoulos, C. D. (2016). Methane/hydrogen fueling a spark-ignition engine for studying NO, CO and HC emissions with a research CFD code. Fuel, 185, 903–915. https://doi.org/10.1016/j.fuel.2016.08.040
  • Kosmadakis, G. M., Rakopoulos, D. C., & Rakopoulos, C. D. (2021). Assessing the cyclic-variability of spark-ignition engine running on methane-hydrogen blends with high hydrogen contents of up to 50%. International Journal of Hydrogen Energy, 46(34), 17955–17968. https://doi.org/10.1016/j.ijhydene.2021.02.158
  • Lee, S., Kim, C., Choi, Y., Lim, G., & Park, C. (2014). Emissions and fuel consumption characteristics of an HCNG-fueled heavy-duty engine at idle. International Journal of Hydrogen Energy, 39(15), 8078–8086. https://doi.org/10.1016/j.ijhydene.2014.03.079
  • Liu, Z., Yu, X., Sun, P., & Xu, S. (2021). Experimental investigation of the performance and emissions of a dual-injection SI engine with natural gas direct injection plus gasoline port injection under lean-burn conditions. Fuel, 300, 120952. https://doi.org/10.1016/j.fuel.2021.120952
  • Ma, F., Wang, J., Wang, Y., Wang, Y., Li, Y., Liu, H., & Ding, S. (2008). Influence of different volume percent hydrogen/natural gas mixtures on idle performance of a CNG engine. Energy and Fuels, 22(3), 1880–1887. https://doi.org/10.1021/ef7006485
  • Ma, F., Wang, Y., Liu, H., Li, Y., Wang, J., & Zhao, S. (2007). Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. International Journal of Hydrogen Energy, 32(18), 5067–5075. https://doi.org/10.1016/j.ijhydene.2007.07.048
  • Ma, F., & Wang, Y. (2008). Study on extension of operation limit through hydrogen enrichment in a natural gas spark ignition engine. International Journal of Hydrogen Energy, 33(4), 1416–1424. https://doi.org/10.1016/j.ijhydene.2007.12.040
  • Moon, S. (2018). Potential of direct-injection for the improvement of homogeneous-charge combustion in spark-ignition natural gas engines. Applied Thermal Engineering, 136, 41–48. https://doi.org/10.1016/j.applthermaleng.2018.01.068
  • Moreno, F., Muñoz, M., Arroyo, J., Magén, O., Monné, C., & Suelves, I. (2012). Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. International Journal of Hydrogen Energy, 37(15), 11495–11503. https://doi.org/10.1016/j.ijhydene.2012.04.012
  • Niculae, A. R., Miron, L., & Chiriac, R. (2020). On the possibility to simulate the operation of a SI engine using alternative gaseous fuels. Energy Reports, 6(3), 167–176. https://doi.org/10.1016/j.egyr.2019.10.035
  • Prasad, R. K., & Agarwal, A. K. (2021). Effect of hydrogen enrichment of compressed natural gas on combustible limit and flame kernel evolution in a constant volume combustion chamber using laser ignition. Fuel, 302, 121112. https://doi.org/10.1016/j.fuel.2021.121112
  • Sagar, S. M. V., & Agarwal, A. K. (2018). Hydrogen-Enriched compressed natural gas: An alternate fuel for IC engines. In D. Srivastava, A. Agarwal, A. Datta, and R. Maurya (Eds.), Advances in Internal Combustion Engine Research. Energy, Environment, and Sustainability (pp. 111–134). Springer . https://doi.org/10.1007/978-981-10-7575-9_6
  • Singh, E., Morganti, K., & Dibble, R. (2019). Dual-fuel operation of gasoline and natural gas in a turbocharged engine. Fuel, 237, 694–706. https://doi.org/10.1016/j.fuel.2018.09.158
  • Smolenskaya, N. M., & Smolenskii, V. V. (2019). Influence of the type of fuel on the toxicity of exhaust gases in SI engines. IOP Conference Series: Earth and Environmental Science, 22-24 November, 2018. Russian Federation, Yurga, 224, 012044. Yurga: IOP Publishing Ltd.
  • song, J., Choi, M., & Park, S. (2017). Comparisons of the volumetric efficiency and combustion characteristics between CNG-DI and CNG-PFI engines. Applied Thermal Engineering, 121(6), 595–603. https://doi.org/10.1016/j.applthermaleng.2017.04.110
  • Wang, J., Chen, H., Liu, B., & Huang, Z. (2008). Study of cycle-by-cycle variations of a spark ignition engine fueled with natural gas–hydrogen blends. International Journal of Hydrogen Energy, 33(18), 4876–4883. https://doi.org/10.1016/j.ijhydene.2008.06.062
  • Zhao, J., Ma, F., Xiong, X., Deng, J., Wang, L., Naeve, N., & Zhao, S. (2013). Effects of compression ratio on the combustion and emission of a hydrogen enriched natural gas engine under different excess air ratio. Energy, 59, 658–665. https://doi.org/10.1016/j.energy.2013.07.033