2,934
Views
2
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Physicochemical characteristics of chemically treated bagasse fibers

, , ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 2014025 | Received 24 Sep 2021, Accepted 30 Nov 2021, Published online: 22 Dec 2021

References

  • Alonso Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., Garzone, P., & Cornacchia, G. (2011). Energy recovery from sugarcane-trash in the light of 2nd generation biofuels. Part 1: Current situation and environmental aspects. Waste and Biomass Valorization, 2(1), 1–12. https://doi.org/10.1007/s12649-010-9048-0
  • Aminudin, E., Khalid, N. H. A., Ain Azman, N., Bakri, K., Fadhil Md Din, M., Zakaria, R., Azmira Zainuddin, N., Zainorizuan, M. J., Yee Yong, L., Alvin John Meng Siang, L., Mohamad Hanifi, O., Siti Nazahiyah, R., & Mohd Shalahuddin, A. (2017). Utilization of Bagasse waste based materials as improvement for thermal insulation of cement brick. MATEC Web Conference, 103, 01019. https://doi.org/10.1051/matecconf/201710301019
  • Balaji, A., Karthikeyan, B., Swaminathan, J., & Raj, C. S. (2020). Thermal behaviour of cardanol resin reinforced 20 mm long untreated bagasse fiber composites. International Journal of Polymer Analysis and Characterization, 23(1), 70–77. https://doi.org/10.1080/1023666X.2017.1387448
  • Bansal, M., Chauhan, G. S., Kaushik, A., & Sharma, A. (2016). Extraction and functionalization of Bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes. International Journal of Biological Macromolecules, 91, 887–894. https://doi.org/10.1016/j.ijbiomac.2016.06.045
  • Bartos, A., Anggono, J., Elvira Farkas, Á., Kun, D., Edi Soetaredjo, F., Móczó, J., Antoni, Purwaningsih, H., & Pukánszky, B. (2020). Hariyati Purwaningsih, Béla Pukánszky, Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 88, 106549. https://doi.org/10.1016/j.polymertesting.2020.106549
  • Cerqueira, E. F., Baptista, C. A. R. P., & Mulinari, D. R. (2011). Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Engineering, 10, 2046–2051. https://doi.org/10.1016/j.proeng.2011.04.339
  • Chokshi, S., Gohil, P., & Patel, D. (2020). Experimental investigations of bamboo, cotton and viscose rayon fiber reinforced unidirectional composites. Materials Today: Proceedings, 28(2), 498–503. https://doi.org/10.1016/j.matpr.2019.12.208
  • Chokshi, S., & Gohil, P. (2021). Experimental investigation and mathematical modeling of longitudinally placed natural fiber reinforced polymeric composites including interphase volume fraction. Fibers and Polymers, 1–14. https://doi.org/10.1007/s12221-021-2087-2
  • Chokshi, S., Parmar, V., Gohil, P., & Chaudhary, V. (2020). Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers, 1–12. https://doi.org/10.1080/15440478.2020.1848738
  • de Paiva, F. F. G., de Maria, V. P. K., Torres, G. B., Dognani, G., Dos Santos, R. J., Cabrera, F. C., & Job, A. E. (2019). Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. Journal of Material Cycles and Waste Management, 21(2), 326–335. https://doi.org/10.1007/s10163-018-0801-y
  • Deepa, G. D., Subrahmanya Bhat, K., Mahesha, G. T., & Sánchez, J. (2020). Sugarcane bagasse fiber reinforced composites: Recent advances and applications. Cogent Engineering, 7(1), 1823159. https://doi.org/10.1080/23311916.2020.1823159
  • Fasanella, C. C., Montes, C. R., Rossi, M. L., Aguiar, M., Fernando, L., Ferreira, R., Tiradentes, U., & Pupo, M. (2018). Microscopic analysis of sugarcane bagasse following chemical and fungal treatment. Cellulose Chemistry and Technology, 52(1–2), 59–64. https://www.cellulosechemtechnol.ro/pdf/CCT1-2(2018)/p.59-64.pdf
  • Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(Butylene Succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160–169. https://doi.org/10.1016/j.indcrop.2012.12.013
  • Ghetti, P., Ricca, L., & Angelini, L. (1996). Thermal analysis of biomass and corresponding pyrolysis products. Fuel, 75(5), 565–573. https://doi.org/10.1016/0016-2361(95)00296-0
  • Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives, Composites Part A. Applied Science and Manufacturing, 77, 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007
  • Hajiha, H., & Sain, M. (2015). The use of sugarcane bagasse fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials 525–549. https://doi.org/10.1533/9781782421276.4.525
  • Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328
  • Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., Bergeret, A., Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., & Bergeret, A. (2018a). Characterization of the fibre modifications and localization of the functionalization molecules. Surfaces and Interfaces in Natural Fibre Reinforced Composites, 10, 71–100. https://link.springer.com/chapter/10.1007%2F978-3-319-71410-3_3
  • Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., Bergeret, A., Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., & Bergeret, A. (2018b). Characterization of the fibre modifications and localization of the functionalization molecules, surfaces and interfaces in natural fibre reinforced composites. 71–100. https://doi.org/10.1007/978-3-319-71410-3_4
  • Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33. https://doi.org/10.1007/s10924-006-0042-3
  • Loh, Y. R., Sujan, D., Rahman, M. E., & Das, C. A. (2013). Resources, conservation and recycling sugarcane Bagasse — The future composite material : A literature review. Resources, Conservation and Recycling, 75, 14–22. https://doi.org/10.1016/j.resconrec.2013.03.002
  • Madhu, P., Sanjay, M. R., Senthamaraikannan, P., Pradeep, S., Subrahmanya Bhat, K., Yogesha, B., & Siengchin, S. (2019). Characterization of cellulosic fiber from Phoenix pusilla leaves as potential reinforcement for polymeric composites. Journal of Materials Research and Technology, 8(3), 2597–2604. https://doi.org/10.1016/j.jmrt.2019.03.006
  • Mahesha, G. T., Shenoy, B. S., B, M. V. K., & Subrahmanya Bhat, K. (2016). Preparation of unidirectional Grewia Serrulata reinforced polyester composites and evaluation of tensile and flexural properties. Journal of Natural Fibers, 13(5), 547–554. https://doi.org/10.1080/15440478.2015.1081575
  • Mahesha, G. T., Subrahmanya Bhat, K., & Padmaraja, N. H. (2019). Biodegradable natural fiber reinforced Polymer Matrix Composites: Technical updates, AIP Conf. Proceedings, 2166, 020001.
  • Mahmud, A., & Anannya, F. R. (2021). Ferdausee Rahman Anannya, Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon, 7(8), e07771. https://doi.org/10.1016/j.heliyon.2021.e07771
  • Manimaran, P., Senthamaraikannan, P., Murugananthan, K., & Sanjay, M. R. (2018). Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. Journal of Natural Fibers, 15(1), 29–38. https://doi.org/10.1080/15440478.2017.1302388
  • Megiatto, J. D., Hoareau, W., Gardrat, C., Frollini, E., & Castellan, A. (2007). Sisal fibers: Surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and Lignin as model study. Journal of Agricultural and Food Chemistry, 55(21), 8576–8584. https://doi.org/10.1021/jf071682d
  • Pereira, P. H. F., Voorwald, H., Odila, M., Cioffi, H., Rego, A. M. B., Ferraria, A. M., & De Pinho, M. N. (2014). Sugarcane Bagasse cellulose fibres and their hydrous niobium phosphate composites : Synthesis and characterization by XPS, XRD and SEM. Cellulose, 21(1), 641–652. https://doi.org/10.1007/s10570-013-0113-2
  • Prasad, L., Kumar, S., Patel, R. V., Yadav, A., Kumar, V., & Winczek, J. (2020). Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy bio-composites. Materials, 13(23), 5387. https://doi.org/10.3390/ma13235387
  • Rezende, C. A., de Lima, M. A., Maziero, P., deAzevedo, E. R., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(1), 54. https://doi.org/10.1186/1754-6834-4-54
  • Ryszard, M. K., Mackiewicz-Talarczyk, M., & Barriga-Bedoya, J. (2020). 20 - New emerging natural fibres and relevant sources of information. In R. M. Kozłowski & M. Mackiewicz-Talarczyk (Eds.), Woodhead publishing series in textiles, handbook of natural fibres (Second ed., pp. 747–787). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818398-4.00022-0.
  • Saw, S. S., & Datta, C. (2009). Thermomechanical properties of jute/bagasse fiber reinforced epoxy thermoset composites. BioResources, 4(4), 1455–1476. https://bioresources.cnr.ncsu.edu/resources/thermomechanical-properties-of-jutebagasse-hybrid-reinforced-epoxy-thermoset-composites/
  • Shyam Kumar, R., Balasundar, P., Naif Abdullah Al-Dhabi, R. P., Subrahmanya Bhat, K., Bhat, K. S., Narayanasamy, P., Narayanasamy, P., & Narayanasamy, P. (2021). A new natural cellulosic Pigeon Pea (Cajanus cajan) pod fiber characterization for bio-degradable polymeric composites. Journal of Natural Fibers, 18(9), 1285–1295. https://doi.org/10.1080/15440478.2019.1689887
  • Simão, J. A., Carmona, V. B., Marconcini, J. M., Mattoso, L. H. C., Barsberg, S. T., & Sanadi, A. R. (2016). Effect of fiber treatment condition and coupling agent on the mechanical and thermal properties in highly filled composites of sugarcane Bagasse Fiber/PP. Materials Research, 19(4), 746–751. https://doi.org/10.1590/1980-5373-MR-2015-0609
  • Vidyashri, V., Henrita Lewis, P. N., Mahesha, G. T., Subrahmanya Bhat, K., & Bhat, K. S. (2019). Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization. Cogent Engineering, 6(1), 1708644. https://doi.org/10.1080/23311916.2019.1708644
  • Wirawan, R., & Sapuan, S. M. (2018). Sugarcane Bagasse-Filled Poly(Vinyl Chloride) Composites: A Review. In S.M. Sapuan, H. Ismail, & E.S. Zainudin (Eds.), Woodhead Publishing Series in Composites Science and Engineering, Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites (pp. 157–168). Woodhead Publishing, ISBN 9780081021606. https://doi.org/10.1016/B978-0-08-102160-6.00007-X
  • Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., Yogesha, B., & Pham, D. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1446667. https://doi.org/10.1080/23311916.2018.1446667