8,048
Views
4
CrossRef citations to date
0
Altmetric
COMPUTER SCIENCE

Security in Internet of Drones: A Comprehensive Review

, ORCID Icon & ORCID Icon | (Reviewing editor)
Article: 2029080 | Received 26 Aug 2021, Accepted 22 Nov 2021, Published online: 16 Mar 2022

References

  • Abdalla, M., Fouque, P.-A., & Pointcheval, D., “Password-based authenticated key exchange in the three-party setting,” in International Workshop on Public Key Cryptography. Berlin, Heidelberg. Springer, 2005, pp. 65–80.
  • Abdallah, A., Ali, M. Z., Mišić, J., & Mišić, V. B. (2019). Efficient security scheme for disaster surveillance uav communication networks. Information, 10(2), 43. https://doi.org/10.3390/info10020043
  • Abdel-Malek, M. A., Akkaya, K., Saputro, N., & Ibrahim, A. S., “Efficient authentication of drones to mmwave wireless mesh networks in post-disaster scenarios,” in GLOBECOM 2020-2020 IEEE Global Communications Conference. Taipei, Taiwan. IEEE, 2020, pp. 1–6.
  • Aggarwal, S., Shojafar, M., Kumar, N., & Conti, M., “A new secure data dissemination model in internet of drones,”in ICC 2019-2019 IEEE International Conference on Communications (ICC). Shanghai, China. IEEE, 2019, pp. 1–6.
  • Agron, D. J. S., Ramli, M. R., Lee, J.-M., & Kim, D.-S., “Secure ground control station-based routing protocol for uav networks,” in 2019 International Conference on Information and Communication Technology Convergence (ICTC). Jeju, Korea (South). IEEE, 2019, pp. 794–798.
  • Ahn, O., Kim, J., & Lim, C., “Smart uav research program status update: Achievement of tilt-rotor technology development and vision ahead,” in 27th Congress of International Council of the Aeronautical Sciences, ICAS. KARI (Korea Aerospace Research Institute), South Korea, vol. 6, p. 2010.
  • Akram, R. N., Markantonakis, K., Mayes, K., Habachi, O., Sauveron, D., Steyven, A., & Chaumette, S., “Security, privacy and safety evaluation of dynamic and static fleets of drones,” in 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). St. Petersburg, FL, USA. IEEE, 2017, pp. 1–12.
  • Albalawi, M., & Song, H., “Data security and privacy issues in swarms of drones,” in 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS). Herndon, VA, USA. IEEE, 2019, pp. 1–11.
  • Ali, Z., Chaudhry, S. A., Ramzan, M. S., & Al-Turjman, F. (2020). Securing smart city surveillance: A lightweight authentication mechanism for unmanned vehicles. IEEE Access, 8, 43711–43724. https://doi.org/10.1109/ACCESS.2020.2977817
  • Alladi, T., Chamola, V.Naren, and Kumar, N. et al. (2020). Parth: A two-stage lightweight mutual authentication protocol for uav surveillance networks. Computer Communications, 160, 81–90. https://doi.org/10.1016/j.comcom.2020.05.025
  • Alladi, T., Naren, N., Bansal, G., Chamola, V., & Guizani, M. (2020). Secauthuav: A novel authentication scheme for uav-base station scenario. IEEE Transactions on Vehicular Technology, 69(12), 15068–15077. https://doi.org/10.1109/TVT.2020.3033060
  • Allouch, A., Cheikhrouhou, O., Koubâa, A., Khalgui, M., & Abbes, T., “Mavsec: Securing the mavlink protocol for ardupilot/px4 unmanned aerial systems,” in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). Tangier, Morocco. IEEE, 2019, pp. 621–628.
  • Almalki, F. A., Soufiene, B. O., Alsamhi, S. H., & Sakli, H. (2021). A low-cost platform for environmental smart farming monitoring system based on iot and uavs. Sustainability, 13(11), 5908. https://doi.org/10.3390/su13115908
  • Alsamhi, S. H., Afghah, F., Sahal, R., Hawbani, A., Al-qaness, A., Lee, B., & Guizani, M. (2021). Green internet of things using uavs in b5g networks: A review of applications and strategies. Ad Hoc Networks, 117, 102505. https://doi.org/10.1016/j.adhoc.2021.102505
  • Alsamhi, S. H., Almalki, F., Ma, O., Ansari, M. S., & Lee, B. (2021). Predictive estimation of optimal signal strength from drones over iot frameworks in smart cities. IEEE Transactions on Mobile Computing, 1. doi:10.1002/ett.4255. https://doi.org/10.1109/TMC.2021.3074442
  • Alsamhi, S. H., Lee, B., Guizani, M., Kumar, N., Qiao, Y., & Liu, X. (2021). Blockchain for decentralized multi-drone to combat covid-19 and future pandemics: Framework and proposed solutions. Transactions on Emerging Telecommunications Technologies. 32 , e4255.
  • Alsamhi, S. H., Ma, O., Ansari, M. S., & Almalki, F. A. (2019). Survey on collaborative smart drones and internet of things for improving smartness of smart cities. Ieee Access, 7, 128125–128152. https://doi.org/10.1109/ACCESS.2019.2934998
  • Alsamhi, S. H., Ma, O., Ansari, M. S., & Gupta, S. K. (2019). Collaboration of drone and internet of public safety things in smart cities: An overview of qos and network performance optimization. Drones, 3(1), 13. https://doi.org/10.3390/drones3010013
  • Altawy, R., & Youssef, A. M. (2016). Security, privacy, and safety aspects of civilian drones: A survey. ACM Transactions on Cyber-Physical Systems, 1(2), 1–25. https://doi.org/10.1145/3001836
  • Arce, S., Vernon, C. A., Hammond, J., Newell, V., Janson, J., Franke, K. W., & Hedengren, J. D. (2020). Automated 3d reconstruction using optimized view-planning algorithms for iterative development of structure-from-motion models. Remote Sensing, 12(13), 2169. https://doi.org/10.3390/rs12132169
  • Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma, P. H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., and Von Oheimb, D. et al., “The avispa tool for the automated validation of internet security protocols and applications,” in International conference on computer aided verification. Berlin, Heidelberg. Springer, 2005, pp. 281–285.
  • Armour, C., & Ross, J. (2017). The health and well-being of military drone operators and intelligence analysts: A systematic review. Military Psychology, 29(2), 83–98. https://doi.org/10.1037/mil0000149
  • Atoev, S., Kwon, O.-J., Kim, C.-Y., Lee, S.-H., Choi, Y.-R., & Kwon, K.-R., “The secure uav communication link based on otp encryption technique,” in 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). Zagreb, Croatia. IEEE, 2019, pp. 1–3.
  • Bae, M., & Kim, H. (2019). Authentication and delegation for operating a multi-drone system. Sensors, 19(9), 2066. https://doi.org/10.3390/s19092066
  • Baidya, S., Shaikh, Z., & Levorato, M., “Flynetsim: An open source synchronized uav network simulator based on ns-3 and ardupilot,” in Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. UC Irvine, CA, United States, 2018, pp. 37–45.
  • Baldini, F., Anandkumar, A., & Murray, R. M., “Learning pose estimation for uav autonomous navigation and landing using visual-inertial sensor data,” in 2020 American Control Conference (ACC) Denver, CO, USA. IEEE, 2020, pp. 2961–2966.
  • Bauk, S., “Performances of some autonomous assets in maritime missions,” 2020.
  • Bellare, M., & Rogaway, P., “Random oracles are practical: A paradigm for designing efficient protocols,” in Proceedings of the 1st ACM Conference on Computer and Communications Security Watson Research Cent, United States, 1993, pp. 62–73.
  • Benzarti, S., Triki, B., & Korbaa, O. (2018). Privacy preservation and drone authentication using id-based signcryption. In SoMeT (IOS Press) (pp. 226–239).
  • Bera, B., Chattaraj, D., & Das, A. K. (2020). Designing secure blockchain-based access control scheme in iot-enabled internet of drones deployment. Computer Communications, 153, 229–249. https://doi.org/10.1016/j.comcom.2020.02.011
  • Bera, B., Das, A. K., Garg, S., Piran, M. J., & Hossain, M. S. (2021). Access control protocol for battlefield surveillance in drone-assisted iot environment. IEEE Internet of Things Journal 9 , 1. https://doi.org/10.1109/JIOT.2020.3049003
  • Bera, B., Das, A. K., & Sutrala, A. K. (2021). Private blockchain-based access control mechanism for unauthorized uav detection and mitigation in internet of drones environment. Computer Communications, 166, 91–109. https://doi.org/10.1016/j.comcom.2020.12.005
  • Bera, B., Saha, S., Das, A. K., Kumar, N., Lorenz, P., & Alazab, M. (2020). Blockchain-envisioned secure data delivery and collection scheme for 5g-based iot-enabled internet of drones environment. IEEE Transactions on Vehicular Technology, 69(8), 9097–9111. https://doi.org/10.1109/TVT.2020.3000576
  • Blanchet, B. (2013). Automatic verification of security protocols in the symbolic model: The verifier proverif. In Foundations of security analysis and design VII (pp. 54–87). Springer.
  • Boccadoro, P., Striccoli, D., & Grieco, L. A. (2021). An extensive survey on the internet of drones. Ad Hoc Networks, 122, 102600. https://doi.org/10.1016/j.adhoc.2021.102600
  • Bondi, E., Dey, D., Kapoor, A., Piavis, J., Shah, S., Fang, F., Dilkina, B., Hannaford, R., Iyer, A., Joppa, L., and Tambe, M. et al., “Airsim-w: A simulation environment for wildlife conservation with uavs,” in Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies Menlo Park and San Jose, 2018, pp. 1–12.
  • Bondi, E., Jain, R., Aggrawal, P., Anand, S., Hannaford, R., Kapoor, A., Piavis, J., Shah, S., Joppa, L., Dilkina, B., and Tambe, M. et al., “Birdsai: A dataset for detection and tracking in aerial thermal infrared videos,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Snowmass, CO, USA, 2020, pp. 1747–1756.
  • Borisov, K., Lubushkina, I., & Panasenko, S., “Adaptation of an authentication protocol based on asymmetric keys for use in uav c2 link security systems,” in Proceedings of the 12th International Conference on Security of Information and Networks ANCUD Ltd., Moscow, Russian Federation, 2019, pp. 1–4.
  • Bouafif, H., Kamoun, F., & Iqbal, F. (2020). Towards a better understanding of drone forensics: A case study of parrot ar drone 2.0. International Journal of Digital Crime and Forensics (IJDCF), 12(1), 35–57. https://doi.org/10.4018/IJDCF.2020010103
  • Boyd, C., & Mao, W., “On a limitation of ban logic,” in Workshop on the Theory and Application of of Cryptographic Techniques Berlin, Heidelberg. Springer, 1993, pp. 240–247.
  • Bozga, L., Lakhnech, Y., & Périn, M., “Hermes: An automatic tool for verification of secrecy in security protocols,” in International Conference on Computer Aided Verification Berlin, Heidelberg. Springer, 2003, pp. 219–222.
  • Burrows, M., Abadi, M., & Needham, R. M., “A logic of authentication,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences Univ of Cambridge Computer Lab, United Kingdom, vol. 426, pp. 233–271, 1989.
  • Canetti, R., & Krawczyk, H., “Universally composable notions of key exchange and secure channels,” in International Conference on the Theory and Applications of Cryptographic Techniques Amsterdam. Springer, 2002, pp. 337–351.
  • Chaudhry, S. A., Yahya, K., Karuppiah, M., Kharel, R., Bashir, A. K., & Zikria, Y. B. (2021). Gcacs-iod: A certificate based generic access control scheme for internet of drones. Computer Networks, 191, 107999. https://doi.org/10.1016/j.comnet.2021.107999
  • Chen, C.-L., Deng, -Y.-Y., Weng, W., Chen, C.-H., Chiu, Y.-J., & Wu, C.-M. (2020). A traceable and privacy-preserving authentication for uav communication control system. Electronics, 9(1), 62. https://doi.org/10.3390/electronics9010062
  • Chen, L., Qian, S., Lim, M., & Wang, S. (2018). An enhanced direct anonymous attestation scheme with mutual authentication for network-connected uav communication systems. China Communications, 15(5), 61–76. https://doi.org/10.1109/CC.2018.8387987
  • Chen, Y.-J., & Wang, L.-C. (2018). Privacy protection for internet of drones: A network coding approach. IEEE Internet of Things Journal, 6(2), 1719–1730. https://doi.org/10.1109/JIOT.2018.2875065
  • Cheon, S.-H., Ha, S.-W., & Moon, Y.-H., “Hardware-in-the-loop simulation platform for image-based object tracking method using small uav,” in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC) Sacramento, CA, USA. IEEE, 2016, pp. 1–5.
  • Cheon, J. H., Han, K., Hong, S.-M., Kim, H. J., Kim, J., Kim, S., Seo, H., Shim, H., & Song, Y. (2018). Toward a secure drone system: Flying with real-time homomorphic authenticated encryption. IEEE Access, 6, 24325–24339. https://doi.org/10.1109/ACCESS.2018.2819189
  • Cherif, A., Belkadi, M., & Sauveron, D. (2019). A lightweight and secure data collection serverless protocol demonstrated in an active rfids scenario. ACM Transactions on Embedded Computing Systems (TECS), 18(3), 1–27. https://doi.org/10.1145/3274667
  • Cho, G., Cho, J., Hyun, S., & Kim, H. (2020). Sentinel: A secure and efficient authentication framework for unmanned aerial vehicles. Applied Sciences, 10(9), 3149. https://doi.org/10.3390/app10093149
  • Cho, S.-M., Hong, E., & Seo, S.-H. (2020). Random number generator using sensors for drone. IEEE Access, 8, 30343–30354. https://doi.org/10.1109/ACCESS.2020.2972958
  • Choi, H., Geeves, M., Alsalam, B., & Gonzalez, F., “Open source computer-vision based guidance system for uavs on-board decision making,” in 2016 IEEE aerospace conference Big Sky, MT, USA. IEEE, 2016, pp. 1–5.
  • Cremers, C. J., “The scyther tool: Verification, falsification, and analysis of security protocols,” in International conference on computer aided verification ETH Zurich, Zurich 8092, Switzerland. Springer, 2008, pp. 414–418.
  • Deebak, B., & Al-Turjman, F. (2020). A smart lightweight privacy preservation scheme for iot-based uav communication systems. Computer Communications, 162, 102–117. https://doi.org/10.1016/j.comcom.2020.08.016
  • Deng, H., Arif, U., Yang, K., Xi, Z., Quan, Q., & Cai, K.-Y. (2020). Global optical flow-based estimation of velocity for multicopters using monocular vision in gps-denied environments. Optik, 219, 164923. https://doi.org/10.1016/j.ijleo.2020.164923
  • Dobrea, D.-M., & Dobrea, M.-C. (2020). An autonomous uav system for video monitoring of the quarantine zones. Roman Journal of Information Science and Technology, 23, S53.
  • Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208. https://doi.org/10.1109/TIT.1983.1056650
  • Dong, J., Wu, G., Yang, T., & Li, Y. (2018). The improved image scrambling algorithm for the wireless image transmission systems of uavs. Sensors, 18(10), 3430. https://doi.org/10.3390/s18103430
  • Ebeid, E., Skriver, M., Terkildsen, K. H., Jensen, K., & Schultz, U. P. (2018). A survey of open-source uav flight controllers and flight simulators. Microprocessors and Microsystems, 61, 11–20. https://doi.org/10.1016/j.micpro.2018.05.002
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–uav’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375–383. https://doi.org/10.1016/j.procs.2019.01.151
  • Ever, Y. K. (2020). A secure authentication scheme framework for mobile-sinks used in the internet of drones applications. Computer Communications, 155, 143–149. https://doi.org/10.1016/j.comcom.2020.03.009
  • Fan, J., Qiao, L., Cao, Y., Liu, S., Zhang, W., & Tang, L. (2021). A new password-and position-based authenticated key exchange. Security and Communication Networks, 2021, 1–9. https://doi.org/10.1155/2021/6613392
  • Faraji-Biregani, M., & Fotohi, R. (2021). Secure communication between uavs using a method based on smart agents in unmanned aerial vehicles. The Journal of Supercomputing, 77(5), 5076–5103. https://doi.org/10.1007/s11227-020-03462-0
  • Fernando, M., Jayalath, D., Camtepe, S., & Foo, E., “Reed solomon codes for the reconciliation of wireless phy layer based secret keys,” in 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) Toronto, ON, Canada. IEEE, 2017, pp. 1–6.
  • Ferrag, M. A., & Maglaras, L. (2019). Deliverycoin: An ids and blockchain-based delivery framework for drone-delivered services. Computers, 8(3), 58. https://doi.org/10.3390/computers8030058
  • Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., & Yuan, J. (2019). Survey on uav cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys & Tutorials, 21(4), 3417–3442. https://doi.org/10.1109/COMST.2019.2906228
  • Fournier, B., Guette, G., Tong, V. V. T., & Lanet, J.-L., “Seer4us, secured energy efficient routing for uav swarms,” in 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) Barcelona, Spain. IEEE, 2019, pp. 1–6.
  • Fuller, B., Kok, J., Kelson, N., & Gonzalez, F., “Hardware design and implementation of a mavlink interface for an fpga-based autonomous uav flight control system,” in Proceedings of the 16th Australasian Conference on Robotics and Automation 2014 Queensland University of Technology, Australia. Australian Robotics and Automation Association Inc., 2014, pp. 1–6.
  • Garcia, R., & Barnes, L., “Multi-uav simulator utilizing x-plane,” in Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, USA June 8–10 Aberdeen Proving Ground, United States, 2009. Springer, 2009, pp. 393–406.
  • Ge, C., Zhou, L., Hancke, G. P., & Su, C. (2020). A provenance-aware distributed trust model for resilient unmanned aerial vehicle networks. IEEE Internet of Things Journal 8 16 doi:10.1109/JIOT.2020.3014947 .
  • Genc, H., Zu, Y., Chin, T.-W., Halpern, M., & Reddi, V. J. (2017). Flying iot: Toward low-power vision in the sky. IEEE Micro, 37(6), 40–51. https://doi.org/10.1109/MM.2017.4241339
  • Gharibi, M., Boutaba, R., & Waslander, S. L. (2016). Internet of drones. IEEE Access, 4, 1148–1162. https://doi.org/10.1109/ACCESS.2016.2537208
  • Ghribi, E., Khoei, T. T., Gorji, H. T., Ranganathan, P., & Kaabouch, N., “A secure blockchain-based communication approach for uav networks,” in 2020 IEEE International Conference on Electro Information Technology (EIT) Chicago, IL, USA. IEEE, 2020, pp. 411–415.
  • Goh, K. C., Ng, R. B., Wong, Y.-K., Ho, N. J., & Chua, M. C. (2021). Aerial filming with synchronized drones using reinforcement learning. Multimedia Tools and Applications 12 , 1–26 doi:10.1007/s11042-020-10388-5.
  • Gong, L., Needham, R. M., & Yahalom, R., “Reasoning about belief in cryptographic protocols.” in IEEE Symposium on Security and Privacy Comput Lab, Univ of Cambridge, UK. Citeseer, 1990, pp. 234–248.
  • Gope, P., Millwood, O., & Saxena, N. (2021). A provably secure authentication scheme for rfid-enabled uav applications. Computer Communications, 166, 19–25. https://doi.org/10.1016/j.comcom.2020.11.009
  • Gope, P., & Sikdar, B. (2020). An efficient privacy-preserving authenticated key agreement scheme for edge-assisted internet of drones. IEEE Transactions on Vehicular Technology, 69(11), 13621–13630. https://doi.org/10.1109/TVT.2020.3018778
  • Grieco, G., Artuso, R., Boccadoro, P., Piro, G., & Grieco, L. A., “An open source and system-level simulator for the internet of drones,” in 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops) Istanbul. IEEE, 2019, pp. 1–6.
  • Gu, Y., Yu, X., Guo, K., Qiao, J., & Guo, L. (2021). Detection, estimation, and compensation of false data injection attack for uavs. Information Sciences, 546, 723–741. https://doi.org/10.1016/j.ins.2020.08.055
  • Gynnild, A. (2014). The robot eye witness: Extending visual journalism through drone surveillance. Digital Journalism, 2(3), 334–343. https://doi.org/10.1080/21670811.2014.883184
  • Haque, M. S., & Chowdhury, M. U., “A new cyber security framework towards secure data communication for unmanned aerial vehicle (uav),” in International Conference on Security and Privacy in Communication Systems Deakin University-Burwood Campus, Melbourne, Australia. Springer, 2017, pp. 113–122.
  • Hayajneh, A. M., Zaidi, S. A. R., McLernon, D. C., & Ghogho, M., “Optimal dimensioning and performance analysis of drone-based wireless communications,” in 2016 IEEE Globecom Workshops (GC Wkshps) Washington. IEEE, 2016, pp. 1–6.
  • He, D., Chan, S., & Guizani, M. (2017). Drone-assisted public safety networks: The security aspect. IEEE Communications Magazine, 55(8), 218–223. https://doi.org/10.1109/MCOM.2017.1600799CM
  • He, L., Ma, J., Mo, R., & Wei, D. (2019). Designated verifier proxy blind signature scheme for unmanned aerial vehicle network based on mobile edge computing. Security and Communication Networks, 2019, 1–12. https://doi.org/10.1155/2019/8583130
  • He, L., Ma, J., Shen, L., & Wei, D. (2021). Certificateless designated verifier proxy signature scheme for unmanned aerial vehicle networks. Science China Information Sciences, 64(1), 1–15. https://doi.org/10.1007/s11432-019-2903-2
  • Hentati, A. I., Krichen, L., Fourati, M., & Fourati, L. C., “Simulation tools, environments and frameworks for uav systems performance analysis,” in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) Limassol. IEEE, 2018, pp. 1495–1500.
  • Ho, C. Y., Tseng, S. Y., Lai, C. F., Wang, M. S., & Chen, C. J., “A parameter sharing method for reinforcement learning model between airsim and uavs,” in 2018 1st International Cognitive Cities Conference (IC3) Okinawa. IEEE, 2018, pp. 20–23.
  • Homainejad, N., & Rizos, C. (2015). Application of multiple categories of unmanned aircraft systems (uas) in different airspaces for bushfire monitoring and response. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40 55–60 doi:10.5194/isprsarchives-XL-1-W4-55-2015.
  • Hong, W., Jianhua, L., Chengzhe, L., & Zhe, W. (2020). A provably secure aggregate authentication scheme for unmanned aerial vehicle cluster networks. Peer-to-Peer Networking and Applications, 13(1), 53–63. https://doi.org/10.1007/s12083-019-0718-9
  • Hsieh, -Y.-Y., Lin, W.-Y., Li, D.-L., & Chuang, J.-H., “Deep learning-based obstacle detection and depth estimation,” in 2019 IEEE International Conference on Image Processing (ICIP) Taipei. IEEE, 2019, pp. 1635–1639.
  • Hussain, S., Chaudhry, S. A., Alomari, O. A., Alsharif, M. H., Khan, M. K., & Kumar, N. (2021). Amassing the security: An ecc-based authentication scheme for internet of drones. IEEE Systems Journal, 15(3), 4431–4438. https://doi.org/10.1109/JSYST.2021.3057047
  • Hussein, M. N., Megahed, M. H., & Azeem, M. H. A., “Design and simulation of authenticated encryption aenotp stream cipher algorithm,” in 2017 13th International Computer Engineering Conference (ICENCO) Giza. IEEE, 2017, pp. 393–398.
  • Islam, A., Sadia, K., Masuduzzaman, M., & Shin, S. Y., “Bumar: A blockchain-empowered uav-assisted smart surveillance architecture for marine areas,” in Proceedings of the International Conference on Computing Advancements Dhaka, 2020, pp. 1–5.
  • Jan, S. U., Qayum, F., & Khan, H. U. (2021). Design and analysis of lightweight authentication protocol for securing iod. IEEE Access 69287- 69306 doi:10.1109/ACCESS.2021.3076692 .
  • Keith, J., & Hall, D., “Rapid sizing methodologies for vtol uavs,” in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition United States, 2009, p. 1617.
  • Khan, M. A., Qureshi, I. M., Ullah, I., Khan, S., Khanzada, F., & Noor, F. (2020). An efficient and provably secure certificateless blind signature scheme for flying ad-hoc network based on multi-access edge computing. Electronics, 9(1), 30. https://doi.org/10.3390/electronics9010030
  • Khan, M. A., Ullah, I., Kumar, N., Oubbati, O. S., Qureshi, I., Noor, F., & Ullah, F. (2021). An efficient and secure certificate-based access control and key agreement scheme for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 70(5), 4839–4851. https://doi.org/10.1109/TVT.2021.3055895
  • Khan, M. A., Ullah, I., Nisar, S., Noor, F., Qureshi, I. M., Khanzada, F. U., & Amin, N. U. (2020). An efficient and provably secure certificateless key-encapsulated signcryption scheme for flying ad-hoc network. IEEE Access, 8, 36807–36828. https://doi.org/10.1109/ACCESS.2020.2974381
  • Khan, M. A., Ullah, I., Nisar, S., Noor, F., Qureshi, I. M., Khanzada, F., Khattak, H., & Aziz, M. A. (2020). Multiaccess edge computing empowered flying ad hoc networks with secure deployment using identity-based generalized signcryption. Mobile Information Systems, 2020, 1–15. https://doi.org/10.1155/2020/8861947
  • Khanh, T. D., Komarov, I., Don , L.D., Iureva, R., and Chuprov, S. et al., “Tra: Effective authentication mechanism for swarms of unmanned aerial vehicles,” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI) Canberra. IEEE, 2020, pp. 1852–1858.
  • Kim, K., & Kang, Y., “Drone security module for uav data encryption,” in 2020 International Conference on Information and Communication Technology Convergence (ICTC) Jeju Island. IEEE, 2020, pp. 1672–1674.
  • Kim, S., Youn, T.-Y., Choi, D., & Park, K.-W. (2019). Uav-undertaker: Securely verifiable remote erasure scheme with a countdown-concept for uav via randomized data synchronization. Wireless Communications and Mobile Computing, 2019, 1–11. https://doi.org/10.1155/2019/8913910
  • Ko, Y., Kim, J., Duguma, D. G., Astillo, P. V., You, I., & Pau, G. (2021). Drone secure communication protocol for future sensitive applications in military zone. Sensors, 21(6), 2057. https://doi.org/10.3390/s21062057
  • Koubâa, A., Qureshi, B., Sriti, M.-F., Allouch, A., Javed, Y., Alajlan, M., Cheikhrouhou, O., Khalgui, M., & Tovar, E. (2019). Dronemap planner: A service-oriented cloud-based management system for the internet-of-drones. Ad Hoc Networks, 86, 46–62. https://doi.org/10.1016/j.adhoc.2018.09.013
  • Koutras, D. I., Kapoutsis, A. C., & Kosmatopoulos, E. B. (2020). Autonomous and cooperative design of the monitor positions for a team of uavs to maximize the quantity and quality of detected objects. IEEE Robotics and Automation Letters, 5(3), 4986–4993. https://doi.org/10.1109/LRA.2020.3004780
  • Krishna, C. L., & Murphy, R. R., “A review on cybersecurity vulnerabilities for unmanned aerial vehicles,” in 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) Shanghai. IEEE, 2017, pp. 194–199.
  • Lee, H., Yoon, J., Jang, M.-S., & Park, K.-J. (2021). A robot operating system framework for secure uav communications. Sensors (Switzerland), 21(4), 1–20 doi:10.3390/s21041369.
  • Lei, Y., Zeng, L., Li, Y.-X., Wang, M.-X., & Qin, H. (2021). A lightweight authentication protocol for uav networks based on security and computational resource optimization. IEEE Access, 9, 53769–53785. https://doi.org/10.1109/ACCESS.2021.3070683
  • Li, J., Chen, S., Zhang, F., Li, E., Yang, T., & Lu, Z. (2019). An adaptive framework for multi-vehicle ground speed estimation in airborne videos. Remote Sensing, 11(10), 1241. https://doi.org/10.3390/rs11101241
  • Li, Y., Du, X., & Zhou, S., “A lightweight identity authentication scheme for uav and road base stations,” in Proceedings of the 2020 International Conference on Cyberspace Innovation of Advanced Technologies Guangzhou China (ACM), 2020, pp. 54–58.
  • Li, T., Ma, J., Ma, X., Gao, C., Wang, H., Ma, C., Yu, J., Lu, D., & Zhang, J., “Lightweight secure communication mechanism towards uav networks,” in 2019 IEEE Globecom Workshops (GC Wkshps) Waikoloa. IEEE, 2019, pp. 1–6.
  • Lindgren, K., Leung, S., Nothwang, W. D., & Shamwell, E. J., “Boom-vio: Bootstrapped monocular visual-inertial odometry with absolute trajectory estimation through unsupervised deep learning,” in 2019 19th International Conference on Advanced Robotics (ICAR) Belo Horizonte. IEEE, 2019, pp. 516–522.
  • Liu, L., Qian, H., & Hu, F., “Random label based security authentication mechanism for large-scale uav swarm,” in 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) Xiamen. IEEE, 2019, pp. 229–235.
  • Liu, Y.-C., Tian, J., Ma, C.-Y., Glaser, N., Kuo, C.-W., & Kira, Z., “Who2com: Collaborative perception via learnable handshake communication,” in 2020 IEEE International Conference on Robotics and Automation (ICRA) Paris. IEEE, 2020, pp. 6876–6883.
  • Liu, J., Wang, X. A., Liu, Z., Wang, H., & Yang, X. (2020). Privacy-preserving public cloud audit scheme supporting dynamic data for unmanned aerial vehicles. IEEE Access, 8, 79428–79439. https://doi.org/10.1109/ACCESS.2020.2991033
  • Lombard, A., Durand, L., & Galland, S., “Velocity obstacle based strategy for multi-agent collision avoidance of unmanned aerial vehicles,” in 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops) Como, Italy. IEEE, 2020, pp. 1–6.
  • Lugo, J. J., & Zell, A. (2014). Framework for autonomous on-board navigation with the ar. drone. Journal of Intelligent & Robotic Systems, 73(1), 401–412. https://doi.org/10.1007/s10846-013-9969-5
  • Lv, Z., Qiao, L., Hossain, M. S., & Choi, B. J. (2021). Analysis of using blockchain to protect the privacy of drone big data. IEEE Network, 35(1), 44–49. https://doi.org/10.1109/MNET.011.2000154
  • Maghazei, O., & Netland, T. (2019). Drones in manufacturing: Exploring opportunities for research and practice. Journal of Manufacturing Technology Management, 31(6), 1237–1259. https://doi.org/10.1108/JMTM-03-2019-0099
  • Mao, W., & Boyd, C., “Towards formal analysis of security protocols,” in [1993] Proceedings Computer Security Foundations Workshop VI Franconia. IEEE, 1993, pp. 147–158.
  • Mazdin, P., & Rinner, B., “Coordination of mobile agents for simultaneous coverage,” in International Conference on Principles and Practice of Multi-Agent Systems Turin. Springer, 2019, pp. 170–185.
  • Meadows, C., “A model of computation for the nrl protocol analyzer,” in Proceedings The Computer Security Foundations Workshop VII Franconia. IEEE, 1994, pp. 84–89.
  • Minu, M., & Aroul Canessane, R. (2021). Secure image transmission scheme in unmanned aerial vehicles using multiple share creation with optimal elliptic curve cryptography. Indian Journal of Computer Science and Engineering, 12(1), 129–134. https://doi.org/10.21817/indjcse/2021/v12i1/211201169
  • Mitchell, R., & Chen, R. (2013). Adaptive intrusion detection of malicious unmanned air vehicles using behavior rule specifications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(5), 593–604. https://doi.org/10.1109/TSMC.2013.2265083
  • Nagubandi, H., & Harshan, J., “Rasi: Relay-assisted physical-layer key generation in unmanned aerial vehicles,” in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring) Porto. IEEE, 2018, pp. 1–5.
  • Nikooghadam, M., Amintoosi, H., Islam, S. H., & Moghadam, M. F. (2020). A provably secure and lightweight authentication scheme for internet of drones for smart city surveillance. Journal of Systems Architecture 115 , 101955 doi:10.1016/j.sysarc.2020.101955.
  • Okoli, F., Lang, Y., Kermorgant, O., & Caro, S. (2019). Cable-driven parallel robot simulation using gazebo and ros. In ROMANSY 22–Robot design, dynamics and control (pp. 288–295). Springer.
  • Ouafi, K., & Phan, R. C.-W., “Privacy of recent rfid authentication protocols,” in International Conference on Information Security Practice and Experience Switzerland. Springer, 2008, pp. 263–277.
  • Ozdemir, U., Aktas, Y. O., Vuruskan, A., Dereli, Y., Tarhan, A. F., Demirbag, K., Erdem, A., Kalaycioglu, G. D., Ozkol, I., & Inalhan, G. (2014). Design of a commercial hybrid vtol uav system. Journal of Intelligent & Robotic Systems, 74(1), 371–393. https://doi.org/10.1007/s10846-013-9900-0
  • Ozmen, M. O., & Yavuz, A. A., “Dronecrypt-an efficient cryptographic framework for small aerial drones,” in MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM) Los Angeles. IEEE, 2018, pp. 1–6.
  • Pastor, E., Lopez, J., & Royo, P., “A hardware/software architecture for uav payload and mission control,” in 2006 ieee/aiaa 25TH Digital Avionics Systems Conference Portland, OR, USA. IEEE, 2006, pp. 1–8.
  • Pellerito, V., Olivas, M., & Hassanalian, M. (2020). Design a fixed-wing unmanned aerial vehicle with dynamic soaring capability for titan exploration. AIAA Scitech 2020 Forum 1 , 2018 doi:10.2514/6.2020-2018.
  • Pienroj, P., Schönborn, S., & Birke, R., “Exploring deep reinforcement learning for autonomous powerline tracking” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) Paris. IEEE, 2019, pp. 496–501.
  • Pirker, D., Fischer, T., Lesjak, C., & Steger, C., “Global and secured uav authentication system based on hardware-security,” in 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud) Oxford. IEEE, 2020, pp. 84–89.
  • Prapulla, N., Veena, S., & Srinivasalu, G., “Development of algorithms for mav security,” in 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) Bangalore. IEEE, 2016, pp. 799–802.
  • Pu, C., & Li, Y., “Lightweight authentication protocol for unmanned aerial vehicles using physical unclonable function and chaotic system,” in 2020 IEEE International Symposium on Local and Metropolitan Area Networks Orlando, FL, USA (LANMAN. IEEE, 2020, pp. 1–6.
  • Putera, A. S., & Ramdani, F. (2018). Software testing by standard software metrics method; study case” mission planner” as uav ground station software. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1–8), 123–128.
  • Putranto, D. S. C., Aji, A. K., & Wahyudono, B., “Design and implementation of secure transmission on internet of drones,” in 2019 IEEE 6th Asian Conference on Defence Technology (ACDT) Bali. IEEE, 2019, pp. 128–135.
  • Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., & Aygun, R. S., “Privacy-preserving and efficient sharing of drone videos in public safety scenarios using proxy re-encryption,” in 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI) Virtual, Las Vegas. IEEE, 2020, pp. 45–52.
  • Raja, G., Anbalagan, S., Subramaniyan, A. G., Selvakumar, M. S., Bashir, A. K., & Mumtaz, S. (2021). Efficient and secured swarm pattern multi-uav communication. IEEE Transactions on Vehicular Technology, 70(7), 7050–7058. https://doi.org/10.1109/TVT.2021.3082308
  • Rajendran, S., & Srinivas, S. (2020). Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities. Transportation Research Part E: Logistics and Transportation Review, 143, 102090. https://doi.org/10.1016/j.tre.2020.102090
  • Ramirez-Atencia, C., & Camacho, D. (2018). Extending qgroundcontrol for automated mission planning of uavs. Sensors, 18(7), 2339. https://doi.org/10.3390/s18072339
  • Ranyal, E., & Jain, K. (2021). Unmanned aerial vehicle’s vulnerability to gps spoofing a review. Journal of the Indian Society of Remote Sensing, 49(3), 585–591. https://doi.org/10.1007/s12524-020-01225-1
  • Rashid, A., Sharma, D., Lone, T. A., Gupta, S., & Gupta, S. K., “Secure communication in uav assisted hetnets: A proposed model,” in International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage Atlanta. Springer, 2019, pp. 427–440.
  • Reynaud, L., & Rasheed, T., “Deployable aerial communication networks: Challenges for futuristic applications,” in Proceedings of the 9th ACM symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (ACM), 2012, pp. 9–16.
  • Robakowska, M., Ślezak, D., Tyrańska-Fobke, A., Nowak, J., Robakowski, P., Żuratyński, P., Ładny, J., & Nadolny, K. (2019). Operational and financial considerations of using drones for medical support of mass events in Poland. Disaster Medicine and Public Health Preparedness, 13(3), 527–532. https://doi.org/10.1017/dmp.2018.106
  • Ronaldo, F., Pramadihanto, D., & Sudarsono, A., “Secure communication system of drone service using hybrid cryptography over 4g/lte network,” in 2020 International Electronics Symposium (IES) Surabaya. IEEE, 2020, pp. 116–122.
  • Sahal, R., Alsamhi, S. H., Breslin, J. G., & Ali, M. I. (2021). Industry 4.0 towards forestry 4.0: Fire detection use case. Sensors, 21(3), 694. https://doi.org/10.3390/s21030694
  • Sahingoz, O. K. (2013). Large scale wireless sensor networks with multi-level dynamic key management scheme. Journal of Systems Architecture, 59(9), 801–807. https://doi.org/10.1016/j.sysarc.2013.05.022
  • Saif, A., Dimyati, K., Noordin, K. A., Alsamhi, S. H., & Hawbani, A. (2021). Multi-uav and sar collaboration model for disaster management in b5g networks. Internet Technology Letters, e310 https://doi.org/10.1002/itl2.310.
  • Saif, A., Dimyati, K., Noordin, K. A., Shah, N. S. M., Alsamhi, S., & Abdullah, Q., “Energy-efficient tethered uav deployment in b5g for smart environments and disaster recovery,” in 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA). IEEE Sana'a, 2021, pp. 1–5.
  • Saif, A., Dimyati, K. B., Noordin, K. A. B., Shah, N. S. M., Alsamhi, S., Abdullah, Q., & Farah, N. (2021). Distributed clustering for user devices under unmanned aerial vehicle coverage area during disaster recovery. arXiv preprint arXiv:2103.07931 143- 148 doi:10.1109/ICPEA51500.2021.9417847 .
  • Sattar, N. S., Adnan, M. A., & Kali, M. B., “Secured aerial photography using homomorphic encryption,” in 2017 International Conference on Networking, Systems and Security (NSysS) Dhaka. IEEE, 2017, pp. 107–114.
  • Schneider, D. (2017). Air traffic control for delivery drones [top tech 2017]. IEEE Spectrum, 54(1), 32–33. https://doi.org/10.1109/MSPEC.2017.7802742
  • Semal, B., Markantonakis, K., & Akram, R. N., “A certificateless group authenticated key agreement protocol for secure communication in untrusted uav networks,” in 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC) London. IEEE, 2018, pp. 1–8.
  • Shamwell, E. J., Lindgren, K., Leung, S., & Nothwang, W. D. (2019). Unsupervised deep visual-inertial odometry with online error correction for rgb-d imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10), 2478–2493. https://doi.org/10.1109/TPAMI.2019.2909895
  • Sharma, D., Gupta, S. K., Rashid, A., Gupta, S., Rashid, M., & Srivastava, A. (2020). A novel approach for securing data against intrusion attacks in unmanned aerial vehicles integrated heterogeneous network using functional encryption technique. Transactions on Emerging Telecommunications Technologies 32 , e4114 doi:10.1002/ett.4114.
  • Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C. M. W., Jayakody, D. N. K., Wang, H.-C., & Muthuchidambaranathan, P. (2020). Communication and networking technologies for uavs: A survey. Journal of Network and Computer Applications, 168, 102739. https://doi.org/10.1016/j.jnca.2020.102739
  • Shavarani, S. M., Nejad, M. G., Rismanchian, F., & Izbirak, G. (2018). Application of hierarchical facility location problem for optimization of a drone delivery system: A case study of Amazon prime air in the city of San Francisco. The International Journal of Advanced Manufacturing Technology, 95(9), 3141–3153. https://doi.org/10.1007/s00170-017-1363-1
  • Shin, S.-Y., Kang, Y.-W., & Kim, Y.-G. (2019). Obstacle avoidance drone by deep reinforcement learning and its racing with human pilot. Applied Sciences, 9(24), 5571. https://doi.org/10.3390/app9245571
  • Shin, S.-Y., Kang, Y.-W., & Kim, Y.-G. (2020). Reward-driven u-net training for obstacle avoidance drone. Expert Systems with Applications, 143, 113064. https://doi.org/10.1016/j.eswa.2019.113064
  • Shoufan, A., “Continuous authentication of uav flight command data using behaviometrics,” in 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC) Dhabi. IEEE, 2017, pp. 1–6.
  • Shoufan, A., Al-Angari, H. M., Sheikh, M. F. A., & Damiani, E. (2018). Drone pilot identification by classifying radio-control signals. IEEE Transactions on Information Forensics and Security, 13(10), 2439–2447. https://doi.org/10.1109/TIFS.2018.2819126
  • Šiljeg, A., Domazetović, F., Marić, I., Lončar, N., & Pana, L. (2021). New method for automated quantification of vertical spatio-temporal changes within gully cross-sections based on very-high-resolution models. Remote Sensing, 13(2), 321. https://doi.org/10.3390/rs13020321
  • Singh, A. D., & Alvarez, F. V., “Simulating gps-denied autonomous uav navigation for detection of surface water bodies,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS) Athens. IEEE, 2020, pp. 1792–1800.
  • Song, D. X., Berezin, S., & Perrig, A. (2001). Athena: A novel approach to efficient automatic security protocol analysis 1. Journal of Computer Security, 9(1–2), 47–74. https://doi.org/10.3233/JCS-2001-91–203
  • Sparrow, R. D., Adekunle, A., & Berry, R. J., “Leopard: Lightweight encryption operation permutation addition rotation and diffusion,” in 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS Surfers Paradise). IEEE, 2016, pp. 1–5.
  • Srinivas, J., Das, A. K., Kumar, N., & Rodrigues, J. J. (2019). Tcalas: Temporal credential-based anonymous lightweight authentication scheme for internet of drones environment. IEEE Transactions on Vehicular Technology, 68(7), 6903–6916. https://doi.org/10.1109/TVT.2019.2911672
  • Steinmann, J. A., Babiceanu, R. F., & Seker, R., “Uas security: Encryption key negotiation for partitioned data,” in 2016 Integrated Communications Navigation and Surveillance (ICNS) Herndon. IEEE, 2016, pp. 1E4–1.
  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of uav regulations. Remote Sensing, 9(5), 459. https://doi.org/10.3390/rs9050459
  • Sun, J., Wang, W., Kou, L., Lin, Y., Zhang, L., Da, Q., & Chen, L. (2020). A data authentication scheme for uav ad hoc network communication. Journal of Supercomputing, 76(6), 4041–4056. https://doi.org/10.1007/s11227-017-2179-3
  • Suroso, I., & Irmawan, E. (2019). Analysis of uav multicopter of air photography in new yogyakarta international airports. TELKOMNIKA, 17(1), 521–528. https://doi.org/10.12928/telkomnika.v17i1.9255
  • Syed, F., Gupta, S. K., Hamood Alsamhi, S., Rashid, M., & Liu, X. (2021). A survey on recent optimal techniques for securing unmanned aerial vehicles applications. Transactions on Emerging Telecommunications Technologies, 32(7), e4133. https://doi.org/10.1002/ett.4133
  • Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H. T., & Plosila, J. (2019). Swarms of unmanned aerial vehicles—a survey. Journal of Industrial Information Integration, 16, 100106. https://doi.org/10.1016/j.jii.2019.100106
  • Tan, H., & Chung, I. (2021). Rsu-aided remote v2v message dissemination employing secure group association for uav-assisted vanets. Electronics, 10(5), 548. https://doi.org/10.3390/electronics10050548
  • Tan, Y., Liu, J., & Kato, N. (2020). Blockchain-based key management for heterogeneous flying ad-hoc network. IEEE Transactions on Industrial Informatics 17 doi:10.1109/TII.2020.3048398 .
  • Tan, X., Zuo, Z., Su, S., Guo, X., & Sun, X. (2020). Research of security routing protocol for uav communication network based on aodv. Electronics, 9(8), 1185. https://doi.org/10.3390/electronics9081185
  • Tanveer, M., Khan, A.U, Kumar, N., and Hassan, M. M. et al. (2021). Ramp-iod: A robust authenticated key management protocol for the internet of drones. IEEE Internet of Things Journal 9 doi:10.1109/JIOT.2021.3084946 .
  • Tanveer, M., Zahid, A. H., Ahmad, M., Baz, A., & Alhakami, H. (2020). Lake-iod: Lightweight authenticated key exchange protocol for the internet of drone environment. IEEE Access, 8, 155645–155659. https://doi.org/10.1109/ACCESS.2020.3019367
  • Tao, M., Li, X., Yuan, H., & Wei, W. (2020). Uav-aided trustworthy data collection in federated-wsn-enabled iot applications. Information Sciences, 532, 155–169. https://doi.org/10.1016/j.ins.2020.03.053
  • Teng, L., Jianfeng, M., Pengbin, F., Yue, M., Xindi, M., Jiawei, Z., Gao, C., & Di, L., “Lightweight security authentication mechanism towards uav networks,” in 2019 International Conference on Networking and Network Applications (NaNA) Daegu. IEEE, 2019, pp. 379–384.
  • Tezza, D., & Andujar, M. (2019). The state-of-the-art of human–drone interaction: A survey. IEEE Access, 7, 167438–167454. https://doi.org/10.1109/ACCESS.2019.2953900
  • Tian, Y., Yuan, J., & Song, H. (2019). Efficient privacy-preserving authentication framework for edge-assisted internet of drones. Journal of Information Security and Applications, 48, 102354. https://doi.org/10.1016/j.jisa.2019.06.010
  • Uragun, B., “Energy efficiency for unmanned aerial vehicles,” in 2011 10th International Conference on Machine Learning and Applications and Workshops Honolulu, HI, USA, vol. 2. IEEE, 2011, pp. 316–320.
  • Vemprala, S., & Saripalli, S., “Monocular vision based collaborative localization for micro aerial vehicle swarms,” in 2018 International Conference on Unmanned Aircraft Systems (ICUAS) Dallas. IEEE, 2018, pp. 315–323.
  • Verbeke, J., Hulens, D., Ramon, H., Goedeme, T., & De Schutter, J., “The design and construction of a high endurance hexacopter suited for narrow corridors,” in 2014 International Conference on Unmanned Aircraft Systems (ICUAS) Orlando, FL, USA. IEEE, 2014, pp. 543–551.
  • Verma, G. K., Singh, B., Kumar, N., & He, D. (2019). Cb-ps: An efficient short-certificate-based proxy signature scheme for uavs. IEEE Systems Journal, 14(1), 621–632. https://doi.org/10.1109/JSYST.2019.2921798
  • Vogeltanz, T., & Jašek, R., “Flightgear application for flight simulation of a mini-uav,” in AIP Conference Proceedings Rhodes, vol. 1648. AIP Publishing LLC, 2015, p. 550014.
  • Wang, S., Chen, J., Zhang, Z., Wang, G., Tan, Y., & Zheng, Y., “Construction of a virtual reality platform for uav deep learning,” in 2017 Chinese Automation Congress (CAC) Jinan. IEEE, 2017, pp. 3912–3916.
  • Wang, H., Zhao, H., Zhang, J., Ma, D., Li, J., & Wei, J. (2019). Survey on unmanned aerial vehicle networks: A cyber physical system perspective. IEEE Communications Surveys & Tutorials, 22(2), 1027–1070. https://doi.org/10.1109/COMST.2019.2962207
  • Wazid, M., Bera, B., Mitra, A., Das, A. K., & Ali, R., “Private blockchain-envisioned security framework for ai-enabled iot-based drone-aided healthcare services,” in Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond London, 2020, pp. 37–42.
  • Wazid, M., Das, A. K., Kumar, N., Vasilakos, A. V., & Rodrigues, J. J. (2018). Design and analysis of secure lightweight remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet of Things Journal, 6(2), 3572–3584. https://doi.org/10.1109/JIOT.2018.2888821
  • Wazid, M., Das, A. K., Shetty, S., & Rodrigues, J. J., “On the design of secure communication framework for blockchain-based internet of intelligent battlefield things environment,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) Toronto. IEEE, 2020, pp. 888–893.
  • Wei, X. L., Huang, X. L., Lu, T., & Song, G. G., “An improved method based on deep reinforcement learning for target searching,” in 2019 4th International Conference on Robotics and Automation Engineering (ICRAE) Singapore. IEEE, 2019, pp. 130–134.
  • Weibel, R., & Hansman, R. J., “Safety considerations for operation of different classes of uavs in the nas,” in Aiaa 4th aviation technology, integration and operations (atio) forum, 2004, p. 6244.
  • Whittle, R. (2017). Air mobility bonanza beckons electric vtol developers. Vertiflite, 63(2), 14–21.
  • Won, J., Seo, S.-H., & Bertino, E., “A secure communication protocol for drones and smart objects,” in Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security Singapore, 2015, pp. 249–260.
  • Won, J., Seo, S.-H., & Bertino, E. (2019). A secure shuffling mechanism for white-box attack-resistant unmanned vehicles. IEEE Transactions on Mobile Computing, 19(5), 1023–1039. https://doi.org/10.1109/TMC.2019.2903048
  • Xiao, W., Li, M., Alzahrani, B., Alotaibi, R., Barnawi, A., & Ai, Q. (2021). A blockchain-based secure crowd monitoring system using uav swarm. IEEE Network, 35(1), 108–115. https://doi.org/10.1109/MNET.011.2000210
  • Xiao, C., Wang, L., Zhu, M., & Wang, W. (2016). A resource-efficient multimedia encryption scheme for embedded video sensing system based on unmanned aircraft. Journal of Network and Computer Applications, 59, 117–125. https://doi.org/10.1016/j.jnca.2015.06.021
  • Xu, X., Fu, C., Du, X., & Ratazzi, E. P., “Effective uav and ground sensor authentication,” in 2019 IEEE Global Communications Conference (GLOBECOM) Waikoloa. IEEE, 2019, pp. 1–6.
  • Xu, C., Liao, X., Tan, J., Ye, H., & Lu, H. (2020). Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude. IEEE Access, 8, 74175–74194. https://doi.org/10.1109/ACCESS.2020.2987622
  • Yaacoub, J.-P., Noura, H., Salman, O., & Chehab, A. (2020). Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things, 11, 100218 doi:10.1016/j.iot.2020.100218.
  • Yahuza, M., Idris, M. Y. I., Wahab, A. W. A., Nandy, T., Ahmedy, I. B., & Ramli, R. (2021). An edge assisted secure lightweight authentication technique for safe communication on the internet of drones network. IEEE Access, 9, 31420–31440. https://doi.org/10.1109/ACCESS.2021.3060420
  • Yang, T., Ren, Q., Zhang, F., Xie, B., Ren, H., Li, J., & Zhang, Y. (2018). Hybrid camera array-based uav auto-landing on moving ugv in gps-denied environment. Remote Sensing, 10(11), 1829. https://doi.org/10.3390/rs10111829
  • Zacarias, I., Leite, C. E., Schwarzrock, J., & de Freitas, E. P. (2016). Control platform for multiple unmanned aerial vehicles. IFAC-PapersOnLine, 49(30), 36–41. https://doi.org/10.1016/j.ifacol.2016.11.119
  • Zafar, Z., Awais, M., Jaleel, A., & Majeed, F. (2021). A distributed framework of autonomous drones for planning and execution of relief operations during flood situations. International Arab Journal Of Information Technology, 18(1), 16–24. https://doi.org/10.34028/iajit/18/1/3
  • Zema, N. R., Trotta, A., Natalizio, E., Di Felice, M., & Bononi, L. (2018). The cuscus simulator for distributed networked control systems: Architecture and use-cases. Ad Hoc Networks, 68, 33–47. https://doi.org/10.1016/j.adhoc.2017.09.004
  • Zhang, Y., He, D., Li, L., & Chen, B. (2020). A lightweight authentication and key agreement scheme for internet of drones. Computer Communications, 154, 455–464. https://doi.org/10.1016/j.comcom.2020.02.067
  • Zhang, H., Kumari, S., Obaidat, M. S., & Wei, F. (2020). Gateway-oriented two-server password authenticated key exchange protocol for unmanned aerial vehicles in mobile edge computing. IET Communications, 14(15), 2427–2433. https://doi.org/10.1049/iet-com.2019.1009
  • Zhi, Y., Fu, Z., Sun, X., & Yu, J. (2020). Security and privacy issues of uav: A survey. Mobile Networks and Applications, 25(1), 95–101. https://doi.org/10.1007/s11036-018-1193-x
  • Zuluaga, J. G. C., Leidig, J. P., Trefftz, C., & Wolffe, G., “Deep reinforcement learning for autonomous search and rescue,” in NAECON 2018-IEEE National Aerospace and Electronics Conference Dayton. IEEE, 2018, pp. 521–524.