1,627
Views
1
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

Comparison of the combustion characteristics of gasoline and gasoline–ethanol blend under gasoline compression ignition mode

ORCID Icon &
Article: 2031684 | Received 14 Oct 2021, Accepted 12 Jan 2022, Published online: 10 Feb 2022

References

  • Cung, K. D., Ciatti, S. A., Tanov, S., & Andersson, Ö. (2017). low-temperature combustion of high octane fuels in a gasoline compression ignition engine. Frontiers in Mechanical Engineering, 31, 22. https://doi.org/10.3389/fmech.2017.00022.
  • Dec, J. E., Yang, Y., Dernotte, J., & Ji, C. (2015). Effects of gasoline reactivity and ethanol content on boosted, premixed and partially stratified low-temperature gasoline combustion (LTGC). SAE International Journal of Engines, 8(3), 935–15. https://doi.org/10.4271/2015-01-0813
  • Duan, X., Liu, J., Yuan, Z., Guo, G., Liu, Q., Tang, Q., Deng, B., & Guan, J. (2018). Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend. Energy, 165(December), 455–470. https://doi.org/10.1016/j.energy.2018.09.170
  • Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239(March), 1001–1014. https://doi.org/10.1016/j.fuel.2018.11.066
  • Goyal, H., Kook, S., & Ikeda, Y. J. F. (2019). The influence of fuel ignition quality and first injection proportion on gasoline compression ignition (GCI) combustion in a small-bore engine. Fuel, 235(January), 1207–1215. https://doi.org/10.1016/j.fuel.2018.08.090
  • Hildingsson, L., Kalghatgi, G., Tait, N., Johansson, B., & Harrison, A. (2009). Fuel octane effects in the partially premixed combustion regime in compression ignition engines. SAE Paper, 2009-01(2009–01), 2648. https://doi.org/10.4271/2009-01-2648
  • Jiang, C., Huang, G., Liu, G., Qian, Y., & Lu, X. (2019). Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number. Applied Thermal Engineering, 153(May), 669–677. https://doi.org/10.1016/j.applthermaleng.2019.03.054
  • Kalghatgi, G. T., Risberg, P., & Ångström, H.-E. (2006). Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Transactions, 623–634. https://doi.org/10.4271/2006-01-3385
  • Kalghatgi, G., Hildingsson, L., & Johansson, B. (2010). Low NOx and low smoke operation of a diesel engine using gasolinelike fuels. Journal of Engineering for Gas Turbines and Power, 132(9). https://doi.org/10.1115/1.4000602
  • Kolodziej, C. P., Sellnau, M., Cho, K., & Cleary, D. (2016). Operation of a gasoline direct injection compression ignition engine on naphtha and e10 gasoline fuels. SAE International Journal of Engines, 9(2), 979–1001. https://doi.org/10.4271/2016-01-0759
  • Köten, H., Karagöz, Y., & Balcı, Ö. (2020). Effect of different levels of ethanol addition on performance, emission, and combustion characteristics of a gasoline engine. Advances in Mechanical Engineering, 12(7). https://doi.org/10.1177/1687814020943356
  • Li, T., & Ogawa, H. (2012). Analysis of the trade-off between soot and nitrogen oxides in diesel-like combustion by chemical kinetic calculation. SAE International Journal of Engines, 5(2), 94–101. https://doi.org/10.4271/2011-01-1847
  • Manente, V., Johansson, B., & Cannella, W. (2011). Gasoline partially premixed combustion, the future of internal combustion engines? International Journal of Engine Research, 12(3), 194–208. https://doi.org/10.1177/1468087411402441
  • Mao, B., Chen, P., Liu, H., Zheng, Z., & Yao, M. (2018). Gasoline compression ignition operation on a multi-cylinder heavy duty diesel engine. Fuel, 215(March), 339–351. https://doi.org/10.1016/j.fuel.2017.09.020
  • Masum, B. M., Masjuki, H. H., Kalam, M. A., Rizwanul Fattah, I. M., Palash, S. M., & Abedin, M. J. (2013). Effect of ethanol–gasoline blend on NOx emission in SI engine. Renewable and Sustainable Energy Reviews, 24(August) , 209–222. https://doi.org/10.1016/j.rser.2013.03.046
  • Natti, K. C., Henein, N. A., Poonawala, Y., Muratore, C., Voevodin, A. A., Kohli, P., Aouadi, S., & Talapatra, S. (2009). Particulate matter characterization studies in an HSDI diesel engine under conventional and LTC regime. ACS Applied Materials &; Interfaces, 1(1), 735–745. https://doi.org/10.1021/am800240e
  • Ngo, V. T. (2020). Experimental investigations on combustion and emission characteristic of GCI engine fuelled E20 blend. Cogent Engineering, 7(1), 1826078. https://doi.org/10.1080/23311916.2020.1826078
  • Nguyen, T. L., Hespel, C., Hoang, D. L., & Mounaim-Rousselle, C. (2019). Butanol and gasoline-like blend combustion characteristics for injection conditions of gasoline compression ignition combustion mode. Fuel, 258(December), 116115. https://doi.org/10.1016/j.fuel.2019.116115
  • Noh, H. K., & No, S.-Y. (2017). Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode–A review. Applied Energy, 208(December), 782–802. https://doi.org/10.1016/j.apenergy.2017.09.071
  • Pan, J., Li, X., Yin, Z., Shu, G., Liu, C., & Wei, H. (2021). Effects of intake conditions and octane sensitivity on GCI combustion at early injection timings. Fuel, 298(August), 120803. https://doi.org/10.1016/j.fuel.2021.120803
  • Park, C., Choi, Y., Kim, C., Oh, S., Lim, G., & Moriyoshi, Y. (2010). Performance and exhaust emission characteristics of a spark ignition engine using ethanol and ethanol-reformed gas. Fuel, 89(8), 2118–2125. https://doi.org/10.1016/j.fuel.2010.03.018
  • Putrasari, Y., Ocktaeck, L. J. F., Trasande, L., & Attina, T. M. (2018). A study of a GCI engine fueled with gasoline-biodiesel blends under pilot and main injection strategies. International Journal of Hygiene and Environmental Health, 221(2), 269–282. https://doi.org/10.1016/j.ijheh.2017.11.004
  • Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., & Durrett, R. (2012). Gasoline DICI engine operation in the LTC regime using triple-pulse injection. SAE International Journal of Engines, 5(3), 1109–1132. https://doi.org/10.4271/2012-01-1131
  • Rezaei, S. Z., Zhang, F., Xu, H., Ghafourian, A., Herreros, J. M., & Shuai, S. (2013). Investigation of two-stage split-injection strategies for a Dieseline fuelled PPCI engine. Fuel, 107(May), 299–308. http://dx.doi.org/10.1016/j.fuel.2012.11.048
  • Rousselle, C. M., & Foucher, F. (2013). Optimization of gasoline partially premixed combustion mode. SAE Technical Paper.
  • Sellnau, M., Foster, M., Hoyer, K., Moore, W., Sinnamon, J., & Husted, H. (2014). Development of a gasoline direct injection compression ignition (GDCI) engine. SAE International Journal of Engines, 7(2), 835–851. https://doi.org/10.4271/2014-01-1300
  • Shamun, S., Shen, M., Johansson, B., Tuner, M., Pagels, J., Gudmundsson, A., & Tunestal, P. (2016). Exhaust PM emissions analysis of alcohol fueled heavy-duty engine utilizing PPC. SAE International Journal of Engines, 9(4), 2142–2152. https://doi.org/10.4271/2016-01-2288
  • Solanki, V. S., Mustafi, N. N., & Agarwal, A. K. (2020). Prospects of gasoline compression ignition (GCI) engine technology in transport sector. Advanced Combustion Techniques and Engine Technologies for the Automotive Sector, 77-110. https://doi.org/10.1007/978-981-15-0368-9_5
  • Tang, Q., Liu, H., Li, M., Li, M., & Yao, M. (2016). Study on the double injection strategy of gasoline partially premixed combustion under a light-duty optical engine. SAE International Journal of Engines, 9(4), 2185–2193. https://doi.org/10.4271/2016-01-2299
  • Wei, H., Liu, F., Pan, J., Gao, Q., Shu, G., & Pan, M. (2020). Experimental study on the effect of pre-ignition heat release on GCI engine combustion. Fuel, 262(February), 116562. https://doi.org/10.1016/j.fuel.2019.116562
  • Woo, C., Goyal, H., Kook, S., Hawkes, E. R., & Chan, Q. N. (2016). Double injection strategies for ethanol-fuelled gasoline compression ignition (GCI) combustion in a single-cylinder light-duty diesel engine. SAE Technical Paper.
  • Yao, C., Yang, F., Wang, J., Huang, H., & Ouyang, M. (2015). Injection strategy study of compression ignition engine fueled with naphtha. SAE Technical Paper.
  • Zelenyuk, A., Reitz, P., Stewart, M., Imre, D., Loeper, P., Adams, C., Andrie, M., Rothamer, D., Foster, D., Narayanaswamy, K., & Najt, P. (2014). Detailed characterization of particulates emitted by pre-commercial single-cylinder gasoline compression ignition engine. Combustion and Flame, 161(8), 2151–2164. http://dx.doi.org/10.1016/j.combustflame.2014.01.011
  • Zhao, F., Yang, W., Yu, W., Li, H., Sim, Y. Y., Liu, T., & Tay, K. L. (2018). Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels. Applied Energy, 211(February), 187–193. https://doi.org/10.1007/978-3-319-91442-8_13
  • Zhen, X., Wang, Y., Xu, S., Pan, S.-Q., Li, -L.-L., & Zhang, L.-Y. (2012). The engine knock analysis–An overview. Zhonghua Yi Xue Za Zhi, 92(9), 628–636. https://doi.org/10.1016/j.apenergy.2011.11.079
  • Zhou, Y., Hariharan, D., Yang, R., Mamalis, S., & Lawler, B. (2019). A predictive 0-D HCCI combustion model for ethanol, natural gas, gasoline, and primary reference fuel blends. Fuel, 237(February), 658–675. https://doi.org/10.1016/j.fuel.2018.10.041